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1 Introduction

The growing complexity of robotics software stacks necessitates the use of frameworks
that allow the separation of individual components and explicit communication
between them. In the research community, in particular, open-source frameworks have
prevailed over proprietary middleware or custom full-stack implementations. Their ease
of use and the ease of sharing and re-using loosely coupled components often outweigh
potentially stronger guarantees about reliability and determinism or performance
benefits of competing options. The Robot Operating System (ROS) is such an
open-source framework that has gained popularity in both research and industry
over the last decade ([MFG+22]). It provides abstractions for building modular
robotics software and serves as a communication middleware between components.
The event-triggered execution model of ROS combined with its weak guarantees for
the message-passing implementation can however not guarantee the deterministic
execution of an entire software stack. This lack of repeatability presents a problem for
the testing and evaluation of software components, which has become an integral part of
the development cycle of modern robotics applications. Especially in domains such as
automated driving, continued verification of the expected system performance is critical
for assuring the safety of the entire system. Without deterministic execution of test
cases, observed changes in resulting metrics can not be traced back to specific software
changes with certainty, since random variations may manifest from nondeterministic
execution. This is especially critical when dynamically changing parameters and
functionality by runtime reconfiguration of the software stack, which is desirable for
example for adaptive, situation-aware environment perception methods as proposed
in [HMG+23].

In this thesis, a method is presented to enable repeatable execution of ROS software
stacks by ensuring a deterministic callback sequence at each individual ROS node.
This is enabled by iteratively building a callback graph from pre-defined specifications
of node behavior. Using the callback graph, data flow within the software stack can
be specifically inhibited to ensure deterministic callback ordering at each node.

Chapter 2 provides the necessary background on ROS and introduces the relevant
types of software testing and evaluation. In Chapter 3, first, the nondeterministic
communication and callback behavior and its consequences are described. Then, four
fundamental sources of nondeterministic callback ordering are identified. The rest of
Chapter 3 describes in detail the method of ensuring deterministic callback execution
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and the design and implementation of the orchestrator, which is the newly developed
component implementing the proposed method. In Chapter 4, the functionality of
the implementation is verified and discussed using the previously identified minimal
examples, and usability is assessed by integrating existing components of an existing
autonomous driving stack. Chapter 5 summarizes the findings and gives an outlook
on future enhancements.



2 Background

This chapter introduces ROS and motivates the additional use case of dynamically
reconfiguring ROS systems. Additionally, background on robotics software testing
methodology is given, which will form the context and intended use of the method
proposed in Chapter 3.

2.1 ROS
The Robot Operating System (ROS) [MFG+22] is a software framework used by
robotics developers and the wider research community to implement reusable software
components. It provides valuable abstractions and libraries in the areas of communi-
cation between components, system startup, configuration, and introspection. Since
its first release in 2010, it has gained wide adoption in the robotics community, with
thousands of packages released which provide common functionality in the form of
ROS components that can be integrated into complete software stacks. In 2017,
the first distribution of ROS 2 was released. This marked a complete redesign and
introduced multiple new features explained in detail below, such as Quality of Service
(QoS) and the reliance on the Data Distribution Service (DDS) standard for message
transport. This work is entirely using ROS 2, and while core concepts have changed
little, important details relied upon here do not apply to ROS 1.

This section serves as a brief introduction to the concepts of ROS nodes and topics,
which are the basic primitives allowing communication between software modules, as
well as the launch system.

2.1.1 Communication
Individual software components within a ROS stack are referred to as nodes. A node
typically has one distinct functionality, and well-defined inputs and outputs. An
example may be an object detector node, which has a camera image as input, and a
list of object hypotheses as output. Usually, although not always, each ROS node
runs in a dedicated process.
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Figure 2.1: The ROS 2 client library API stack, showing the ability to both
support multiple underlying communication middlewares (DDS
implementations) and client library bindings in multiple languages.
Diagram by the contributors of the ROS 2 documentation on
docs.ros.org, licensed under CC BY 4.0.

Every ROS Node is a participant in the ROS communication graph, which represents
the connections between the inputs and outputs of multiple nodes. Multiple such
communication graphs (or “ROS node graphs”) are shown in this work, such as in
Fig. 3.1. Communication between nodes is message-based and happens via topics,
which are multi-producer, multi-consumer message channels. Nodes can send messages
to topics using publishers, and receive messages from topics using subscribers. For
each publisher and subscriber, nodes can configure a number of QoS settings, notably,
they can request best-effort or reliable transport and can configure queue sizes. For
publishing, the application calls a simple Application Programming Interface (API)
method of the publisher object, which may directly transfer the message or push the
message to a queue for later, asynchronous transmission. Receiving messages from
subscribers is realized by registering a callback function with the ROS API.

While ROS provides this functionality to the nodes by its API, the underlying
functionality of message delivery and node discovery relies on existing implementations
of the DDS standard. Figure 2.1 shows the API stack, with the user code at the very
top and the DDS implementation at the bottom. The diagram illustrates that ROS
forms a common layer that enables the use of multiple DDS implementations within

https://docs.ros.org
https://creativecommons.org/licenses/by/4.0/
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the middleware (visualized as the blue elements at the bottom of the diagram) and
the use of different programming languages for application development (ros client
library bindings, directly below the user application in the diagram).

An important aspect of the ROS node communication model is that there is no
implicit or explicit back-channel or feedback to the publisher of a message about
its (intended) reception. This implies that there exists no concept of back pressure
or congestion: If a downstream node is not able to process messages at the rate at
which they are published, they will be queued according to the nodes queuing policies
(dropping messages if necessary), but upstream nodes producing the messages will
not be throttled or otherwise notified.

Individual topics in ROS are identified by name and type, whereby the type is an
externally defined structure of named elements which themselves are other ROS types
or of a predefined type such as string, numeric, or array types. Topics are created
as soon as a node creates a corresponding publisher and subscriber, and two nodes
must use the matching name and type to communicate over a topic. In order to allow
flexibility when using a node in different environments, the possibility of changing
internally used names while starting a node is provided, and referred to as name
remapping.

ROS does provide additional mechanisms for communication patterns that do not
fit the publish-subscribe model: ROS services provide a method of one-way remote
procedure calling between ROS nodes. A ROS node can provide a service by registering
a service server, which can then be called by other nodes using a service client.
Identically to topics, services are identified by name and type, where the type of a
ROS service includes both the request and response type. In contrast to topics, a
service call always has a response, which the caller can await.

An additional mechanism built on top of services is actions, which are a ROS way
of controlling long-running, interruptible, tasks running within a ROS node. Since
these are however fundamentally built atop of services and topics and are not used in
the ROS software stack used for evaluation in this work, actions are not of special
interest to this work.

2.1.2 ROS Launch
Since ROS systems usually consist of multiple nodes, a method for starting an entire
robotics software stack is part of the ROS ecosystem. The ROS launch system allows
developers to specify actions required to bring up a system in a launch file. Those
launch files are typically Python scripts, and actions include launching node processes,
including other launch files, or setting parameters.

The possibility to include other launch files allows developers to create subsystems
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that themselves consist of multiple nodes in a specific configuration. Typically, name
remapping is used within the launch file to connect multiple nodes, by setting their
internal, generic names for subscribers and publishers to a common name.

In this work, the launch system will be utilized to redirect subscriptions of nodes
under test by setting appropriate name remappings, and then including the original
launch file as a subsystem, with those parameters applied (further details are provided
in Section 3.8).

2.2 Dynamic Reconfiguration
The combination of a specific set of active components, their specific connections, and
parameters is referred to as the system configuration. The above section describes
how a static, or initial system configuration is specified by the launch file.

Recently, however, research has gone into finding the optimal system configuration
depending on the current operating environment, in order to minimize processing
requirements while maintaining sufficient system performance [HMG+23].

Such a dynamic reconfiguration may be realized by a dedicated software component,
which evaluates the current situation on the basis of available sensor data and environ-
ment information. This module may then decide to perform a system reconfiguration
when appropriate, and as such may start and stop nodes, or change parameters for
running nodes.

To enable this use case, it is necessary to allow changing the system configuration
during runtime. ROS allows starting and stopping nodes at any time, and new
publishers and subscribers can join existing topics. Parameters within ROS nodes
may also be changed during runtime, although the specific node implementation may
choose to only read parameters once during startup. While this is generally possible
within ROS, the interaction of dynamic reconfiguration with the work presented in
this thesis requires special attention (Section 3.7), due to the additional information
about system behavior required by the proposed method.

2.3 Software Testing
While testing has long been considered an essential part of all software development,
it is both especially important and uniquely challenging for robotics, and in particular
automotive, software development. Research in autonomous driving aims to improve
road safety, but this places the responsibility over the safety of occupants and especially
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other traffic participants on the software, which makes testing and verification of
correct behavior essential.

The type of testing relevant to this work can be classified as integration- or system
testing. In the context of ROS software stacks, this amounts to testing one or multiple
ROS nodes entirely, in contrast to more specific testing which would directly test
an algorithm inside a node, without taking the ROS-specific code into consideration.
This work considers performance testing, meaning testing that determines how well
the application or system completes the desired task. Additionally, the focus lies
explicitly on post-processing testing instead of determining system metrics during
runtime. In an autonomous driving context, this amounts to testing using a simulator
or recorded data, and not online performance testing during test drives. Other testing
methods may verify attributes related to software quality and resilience, but those are
not of particular interest in this work. Achieving reproducibility is especially difficult
for those testing methods involving multiple components and their interaction and
communication, which is what this work aims to address by ensuring deterministic
execution.

Regression testing describes the practice of verifying that the performance of the
system under test does not fall below previous test executions. As a special case of
regression testing, one could verify that the output of the system exactly matches a
previous output. This allows the developer to verify that presumably non-functional
changes do indeed not modify the observable system behavior, which may have
previously been quantitatively evaluated.

2.3.1 Software Performance Metrics in Autonomous Driving
A variety of metrics have been proposed for quantitative evaluation and comparison
of both the whole-system performance of autonomous driving software stacks, as well
as individual software components within such a stack.

One possibility for assessing the entire system performance of an autonomous driving
stack is to measure criticality. Criticality is defined by [NWB+21] in Definition 1
as “the combined risk of the involved actors when the traffic situation is continued”.
In [WNK+23], an overview and comparison are given of metrics that measure the
criticality of a traffic scenario, many of which use models for driver behavior in order
to predict dangerous situations by factors such as small distances or large relative
speeds. Notably, the authors of [WNK+23] explicitly assume a deterministic testing
environment, in which repeating the same inputs yields the same outputs. Since
those metrics evaluate the resulting traffic situation, they require running the entire
software stack, even when the influence of only a single module on the result is to be
determined.
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As an example for performance evaluation using application-specific metrics, multiple
metrics for a multi-object tracking module are considered. Specifically, the Multiple
Object Tracking Precision (MOTP) and Multiple Object Tracking Accuracy (MOTA)
metrics as proposed in [BS08] are used in this work. MOTP is defined as the average
distance error d over all matches i in each timestep t (with ct the number of matches
between detections and ground-truth objects in timestep t)

MOTP =
∑t

i di
t∑

t ct

.

MOTA provides a measure for how well the tracking algorithm performs with respect
to missed objects (m), false positives (fp), and track mismatches (mme, i.e. identity
switches between identified objects) over the total number of objects gt, as defined
by

MOTA = 1 −
∑

t (mt + fpt + mmet)∑
t gt

.

Both metrics are calculated over an entire sequence, instead of individual frames.

An additional metric for multi-object tracking applications is the Optimal Subpattern
Assignment (OSPA) metric as defined in [SVV08]. This metric directly measures
the distance between two sets of states with different cardinality, and can thus be
calculated for each timestep instead of over an entire sequence. The OSPA metric of
order p is defined for two sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} and a distance
measure d(c)(x, y) with cutoff at c as

d̄(c)
p (X, Y ) =

(
1
n

(
min
π∈Πn

m∑
i=1

d(c)(xi, yπ(i))p + cp(n − m)
))1/p

.

In the context of multi-object tracking, the sets X and Y represent the estimated
tracks at a specific time step and the corresponding ground truth states. The resulting
distance may then be interpreted as the average distance between a track and its
corresponding ground truth object, with unassigned tracks being assigned the cutoff
value c. This metric will be used in Section 4.4.3 to visualize a change in the system
performance during a single simulation run, which would not be visible using a metric
that is averaged over the entire sequence.

2.3.2 Recorded Data
Evaluation and testing of robotics software is often not performed during runtime,
but instead using pre-recorded input data. This enables fast iteration and comparison
of approaches, methods, or versions thereof with the same inputs. Specific publically
available datasets have evolved into de-facto standards, which allows comparison
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and benchmarking within the entire research community. These datasets are usu-
ally accompanied by ground-truth annotations, which are often required to calculate
application-specific metrics. Some benchmarks focus on comparing system-level bench-
marks and evaluating multiple modules, such as the NuPlan benchmark ([CKT+22])
which aims to compare the resulting long-term driving behavior in a closed-loop
simulation.

The nuScenes dataset ([CBL+19]) for example contains camera images as well as
lidar and radar measurements from an autonomous vehicle, as well as annotations for
class and bounding box of visible objects, and is used extensively to evaluate object
detectors in the autonomous-driving context. In those benchmark datasets, input data
is commonly available in a format specific to that benchmark. For use within ROS,
these formats are often converted to ROS bags, which provide a standard method
for storing message data within ROS at a topic level. For direct recording, the ROS
bag recorder is available. It subscribes to specified topics, and stores every received
message to disk in its serialized format, together with metadata required for replaying
the messages. To replay a bag, the ROS bag player creates publishers for every topic
recorded in the bag and publishes the messages in the same order as recorded.

Time handling during ROS bag replay differs from the normal execution of a ROS
software stack: Since ROS messages may (and often do) contain timestamps of data
acquisition or message creation, and nodes expect to compare them to the current time,
a desired functionality is to replay not only the messages but also the time of recording.
This is supported in ROS by delegating timekeeping to the ROS client library as well,
which then subscribes to the well-known /clock topic to allow overriding the node’s
internal clock. The ROS bag player then periodically publishes this topic with the
time of recording, setting all node clocks.

2.3.3 Simulation
Using a simulator is another method for off-robot software testing besides using
recorded sensor data. A simulator allows for closed-loop execution of the software
stack or module under test. This allows the evaluation of more modules, such as
planning or control algorithms, which directly and immediately influence the robot’s
behavior.

A large number of robotics simulators have been developed, each with specific use
cases and goals, even in the context of autonomous vehicles alone: General robotics
simulators such as Gazebo ([KH04]) feature a general physics engine capable of
simulating arbitrary robots with involved locomotion techniques and a large variety of
sensors. Application-specific simulators such as CARLA ([DRC+17]) utilize existing
rendering engines to simulate typical sensors such as cameras and LIDAR in high
fidelity, and use specific models for simulation of relevant objects such as vehicles and
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other traffic participants. Higher-level simulation tools do not simulate individual
sensor measurements, but the output of detectors, greatly reducing the computational
effort at the cost of not being able to use and test specific detection modules.

The simulator used for evaluation in this work is the DeepSIL framework introduced
in [SMHB21]. While the specific deep-learning-based trajectory prediction features
are not used here, it provides a representative baseline for a simulator in use for
autonomous-driving development, in order to evaluate the integration effort of the
proposed framework. In the configuration used for evaluation, DeepSIL generates
detections from virtual sensors and detection algorithms and simulates vehicles either
by using a driver model or using control inputs generated by external planning and
control modules. The simulated detections, simulated vehicle state estimation as
well as ground truth object states are published to the software under test via ROS
topics.



3 Implementation

This chapter will first introduce the problem of nondeterministic behavior in ROS
using minimal examples in Sections 3.1 and 3.2. Then, in Section 3.3, the design
goals and intended use cases for the implemented software are determined. Lastly,
Sections 3.4 to 3.8 describe the implementation in detail, covering the control of
callback invocations, ordering of callbacks using dependency graphs, node and system
configuration files, as well as details concerning dynamic reconfiguration.

3.1 Problem Description
An important property of all testing and evaluation approaches outlined in Section 2.3
is determinism. A nondeterministic simulation for example may result in substantially
different scenarios leading to changing evaluation metrics over multiple test runs. If
the software under test itself is not deterministic, a regression test might fail even if
no functional changes to the software have been made.

It can be observed, however, that even with deterministic data sources such as
simulators and recordings, and deterministic algorithms under test, resulting metrics
in ROS systems may be nondeterministic. This is due to nondeterministic callback
execution: Varying processing times of intermediate modules and nondeterministic
behavior and latencies within the communication middleware can change the order in
which callbacks are executed, which may alter a node’s behavior, even if the content
of the individual input messages is consistent.

Figure 3.1 displays an example ROS node graph for a testing setup in an autonomous-
driving context. A simulator produces noisy object detections, which are published on
multiple topics. The tracking module receives those detections and sends a combined
list of tracked objects to the planning module, which generates a vehicle trajectory and
appropriate control signals. Those are fed back to the simulator, updating the vehicle
state. The evaluation module receives ground-truth data from the simulator and the
results of the tracking and planning modules. It calculates metrics for evaluating the
performance or safety of planned vehicle trajectories. The individual nodes are all
assumed to be input/output deterministic, meaning that when repeating the exact
same sequence of inputs, the same sequence of outputs is produced. Nondeterministic
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Simulator Tracking Planning

Evaluation

/
Detections Tracks

Ground Truth

Control Signals

Figure 3.1: An exemplary ROS node graph of an autonomous-driving test
setup.

behavior of the entire system may however occur in multiple situations, which all
influence the order of callbacks at each node:

• The control feedback from the planning module to the simulator has variable
delay, and may happen during an earlier or later simulation timestep.

• The order of received detections at the tracking module is nondeterministic,
which may influence its result.

• If the planning module is triggered by a timer instead of by data input, it may
happen before or after an input is received from the tracking module.

Those aspects may additionally be influenced by external factors such as system load
and scheduling or choice of middleware implementation, leading to different evaluation
results for each run.

While the system may be expected to be resilient toward such arguably small deviations
in runtime behavior, such that those do not significantly degrade system performance,
eliminating those is still desirable. If the system is fully deterministic with respect
to callback execution, any change in performance can be unambiguously attributed
to the changes made to algorithms and parameters, and performance evaluation is
perfectly repeatable. Additionally, regression testing for non-functional changes would
be possible by demanding exact equality of system output in response to simulated or
recorded inputs.
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3.2 Sources of Nondeterministic Callback
Sequences

In this section, minimal examples of nodes and connecting topics will be presented,
which introduce nondeterministic behavior even for deterministic nodes.

3.2.1 Lost or Reordered Messages

S M P

Figure 3.2: Node graph showing a data source S and processing node P ,
connected with topic M .

Figure 3.2 shows two ROS nodes communicating via one topic, without any additional
publishers or subscribers connected to the topic. In this scenario, the sending node
publishes messages at a high rate, while the receiving node processes messages slower
than required to handle every message. This causes the subscriber queue to fill up,
eventually dropping messages. Current ROS defaults use the keep last N queue
handling strategy, which would cause the oldest message to get dropped from the
queue when a new one arrives. Under varying system load, the number of processed
messages changes, which leads to nondeterministic node behavior.

It should be noted that this can not be avoided by using the reliable QoS setting in
ROS. A reliably delivered message may still cause another message to be dropped
from the subscriber’s queue if there is no space for the incoming message. Messages
actually getting lost during delivery, which may happen using the best-effort QoS
setting on a constrained transport medium, such as a low-bandwidth wireless network,
are not handled here. A possible measure against this behavior is the keep all
queuing mode, but this is often not feasible, since this may cause the queue size as
well as the input-output latency of the node to grow without bounds.

Finally, message reordering might be of concern. The DDS standard allows ordering
incoming data in the BY_RECEPTION_TIMESTAMP mode, which implies that the receive
order might not match the order in which the messages were published. While ROS
does not make any claims regarding message ordering, it is assumed that the reliable
QoS setting eliminates message reordering. Nonetheless, message reordering, should it
occur, is later also addressed by the same mechanism as possible queue overflow.
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S

D1

D2

T

Figure 3.3: Node graph showing a data source S and node T connected by
two parallel topics D1 and D2, on which messages are published
simultaneously by S.

S M

P1 D1

P2 D2

T

Figure 3.4: Node graph showing data source S and node T connected by
two parallel paths. Each path contains a processing node with a
dedicated output topic. Both paths share the same input topic M .

3.2.2 Inputs From Parallel Processing Chains
In this scenario, a node receives messages on multiple topics, which originate from
the same event in no specified order. In Fig. 3.3, node S publishes a message to
both topics D1 and D2 during the same callback. Usually, those messages would be
regarded as published at the same time. This results in a nondeterministic receive
order of both messages at node T , since transmission latency might differ.

In Fig. 3.4, a similar scenario is shown. Node T again has two input topics D1 and D2,
and a message on both topics is triggered by a single callback at node S. Compared to
the previous example however, S publishes a single message on topic M , that is then
processed by both nodes P1 and P2, which then produce the outputs on D1 and D2.
This exhibits the same problem of nondeterministic receive order of both messages at
node T , and does so even if some assumptions about S and the transmission latency
can be made. First, the nodes P1 and P2 add a nondeterministic processing latency
to the total latency between S and T . This results in nondeterministic latency, even
if the transmission latency of the ROS topic was constant. Second, the data source
S publishes only a single message. In the previous example, deterministic behavior
might be achieved if the middleware were to guarantee immediate and synchronous
delivery of messages, and if the publish order within S was deterministic. Although
these assumptions are not made about the ROS middleware, and generally do not
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hold, this demonstrates that the problem persists even with stronger guarantees from
the middleware.

3.2.3 Multiple Publishers on the Same Topic

S M

P1

D

P2

T

Figure 3.5: Node graph showing data source S and node T connected by two
parallel paths, where the processing nodes on both paths use the
same output topic D. Both paths also share the same input topic
M .

This scenario again consists of a data source S, two processing nodes P1 and P2
and a node T which receives the outputs of P1 and P2, as shown in Fig. 3.5. Once
S publishes a message, both processing callbacks at P1 and P2 run concurrently,
eventually publishing an output. Distinct from the previous example, P1 and P2
use the same output topic D, which consequently is the only input of T . The
communication middleware does not guarantee that the message delivery order at
T matches the publish order at P1 and P2. This results in a nondeterministic
arrival order of both messages at T . Note that while P1 and P2 run concurrently
in this example, this would still be a concern if the processing nodes were triggered
by separate inputs since callback duration and transmission latency would still be
nondeterministic.

As with the scenario in Section 3.2.1, subscriber queue overflow is an additional
concern here. If the subscriber queue of T is full already, a message from either
publishing node may be dropped.

3.2.4 Parallel Service Calls
This example involves four nodes, as shown in Fig. 3.6: One node S publishes a
message to topic M , which causes subscription callbacks at nodes N1, N2 and SP .
SP provides a ROS service, which the nodes N1 and N2 call while executing the
input callback. This causes three callbacks in total at the service provider node, the
order of which is nondeterministic. In this case, this influences not only the future
behavior of the service provider node but also the result of the callbacks at nodes
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MS

N1

N2

SP

Figure 3.6: Node graph showing three nodes N1, N2 and SP all with topic
M as an input. Nodes N1 and N2 call a service provided by SP
during callback execution, as indicated by the dashed arrows.

N1 and N2, since each service response might depend on previous service calls and
message inputs.

3.3 Design Goals
The goal of this thesis is to provide a framework for the repeatable execution of ROS
systems, circumventing the nondeterminism caused by the communication middleware
and varying callback execution duration.

In particular, the framework shall ensure that the sequence of callbacks executed
at each node is deterministic and repeatable, even with nondeterministic callback
durations of the entire system, arbitrary transmission delay of messages, and without
guarantees of message delivery order in specific topics and between topics. This leads
to fully deterministic system execution, provided the input data is deterministic, the
system contains no hidden state beyond each node’s state, and all ROS nodes have a
deterministic input/output behavior. The component controlling callback execution
in this way will in the following be referred to as the orchestrator.

The use case for this framework is that of a researcher or developer who is evaluating
the entire software stack or a specific module within the stack by some application-
specific metric. The researcher expects consistent results across multiple executions
and expects that changes in the resulting measure only result from changes in software
configuration. Using the orchestrator during live testing, such as when performing
test drives of an autonomous driving system, is explicitly not intended, as the goal
of ensuring deterministic callback ordering might stand in conflict with the goal of
minimizing system latency during live execution.
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It is anticipated that some or all nodes within the software stack under test will need to
be modified in a way to make them compatible with the framework. These necessary
modifications shall be kept to a minimum and should leave the node fully operational
without changes in its behavior when the framework is not in use. Additionally, the
ability to integrate nodes that are non-trivial to modify is desirable. This might be the
case when using external ROS nodes, not only because the developer would usually be
unfamiliar with that node’s source code, but also because locally building that node
might be considerably more effort compared to installing a binary distribution.

An additional design goal is to allow for runtime reconfiguration of the software
stack. This includes starting and stopping nodes, changing the parameters of running
nodes, or changing the communication topology. The use of the framework should
not prohibit runtime reconfiguration, such as by requiring a static node graph, and
the reconfiguration step itself should not cause any nondeterministic behavior.

The intended use case dictates the use of both recorded data (ROS bags) and simulators
as sources of input data. For recorded data, existing ROS bags shall be usable, since
re-recording data is costly and large repositories of recorded data often already exist.
When using a simulation, the framework should work with existing simulators, and
the integration effort shall be minimized. In the following, the specific data source
used is referred to as the data provider.

Finally, the execution time impact of using the orchestrator shall be minimized.
Ensuring a deterministic callback order will involve inhibiting callback execution for
some time, and running callbacks serially that would otherwise run in parallel. Both
this induced serialization overhead, as well as the runtime of the orchestrator itself,
should be sufficiently small so as to not interfere with a rapid testing and development
cycle.
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3.4 Controlling Callback Invocations
In all the scenarios presented above, deterministic execution can be achieved by
delaying the execution of specific callbacks in such a way, that the order of callback
executions at each node is fixed. Multiple methods of controlling callback invocations
have been considered, which also directly influence the general architecture of the
framework:

Orchestrator

Component 1 Component 2 Component 3

Figure 3.7: Considered architecture of running all components within a custom
execution environment, without using ROS.

The first approach is to completely avoid the ROS communications middleware and
directly invoke the component’s functionality, without running the corresponding ROS
callbacks. This would completely replace the ROS client library or corresponding
language bindings, at least for the testing and evaluation use case, and provide a fully
custom, and thus entirely controllable, execution environment. Figure 3.7 shows the
individual components contained within the orchestrator, without the ROS-specific
functionality. While this approach would provide the largest amount of flexibility,
and no dependency on or assumptions about ROS, this has been considered not
feasible.

While some ROS nodes cleanly separate algorithm implementation and ROS com-
munication, and allow changing the communication framework easily, this is not the
case for many of the ROS nodes considered here. If a ROS node includes function-
ality that is tightly coupled to the ROS interface, this would require a considerable
re-implementation effort. This also introduces the possibility of diverging implementa-
tions between the ROS node and the code running for evaluation, which would reduce
the significance of the results obtained from evaluation and testing. Additionally, this
design represents a stark difference from the ROS design philosophy of independent
and loosely coupled components.

The second possible approach is to modify the ROS client library in order to control
callback execution on a granular level. Callback execution in ROS nodes is performed
by the executor, and while multiple implementations exist, the most commonly
used standard executor in the ROS Client Library for C++ (rclcpp) has previously
been described in [CBLB19]. The executor is responsible for fetching messages from
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ROS Node 1

App
rcl+orchestrator
DDS

ROS Node 2

App
rcl+orchestrator
DDS

ROS Node 3

App
rcl+orchestrator
DDS

Figure 3.8: Considered architecture of integrating the orchestrator directly into
the ROS client library stack to control callback invocations via the
executor. The arrows represent ROS topics connecting the nodes,
which would not be changed or modified using this approach.

the DDS implementation and executing corresponding subscriber callbacks. It also
manages time, including external time overrides by the /clock topic, and timer
execution. On this layer between the DDS implementation and the user application,
it would be possible to insert functionality to inhibit callback execution and to inform
the framework of callback completion, as shown in Fig. 3.8. Instrumenting the ROS
node below the application layer is especially desirable since it would not require
modification to the node’s source code. This approach does however present other
difficulties: While there is a method to introspect the ROS client libraries via the
ros_tracing package, RCL does not offer a generic plugin interface or other methods
to inject custom behavior. This leaves modifying the RCL implementation, and likely
also the two most popular language bindings, the ROS Client Library for Python
(rclpy) and rclcpp for C++, and building all nodes with those modified versions.
Modifying and distributing those libraries as well as keeping them up to date with the
upstream versions, however, present a considerable implementation overhead. Using
custom rclpy and rclcpp versions additionally inconveniences library users, since
the orchestrated version exhibits different behavior to the unmodified library, which
can be unexpected and difficult to introspect.

The final approach taken is to intercept the inputs to each node on the ROS-topic
level: The orchestrator exists as an external component and individual ROS node
and ensures that all communication passes through it, with no direct connections
remaining between nodes, as visualized in Fig. 3.9. With the knowledge of the intended
node inputs (which are specified in description files, as described in Section 3.6.1),
the orchestrator can now forward messages in the same way as with the originally
intended topology. Additionally, however, the orchestrator can buffer inputs to one
or multiple nodes, thereby delaying the corresponding callback execution. Since the
orchestrator is not expected to execute additional callbacks (which would require
generating or repeating messages), delaying callbacks is sufficient to control the node’s
behavior. By assigning every subscriber to a specific topic an individual connection (a
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ROS Node 1 ROS Node 2 ROS Node 3

Orchestrator

Figure 3.9: Chosen architecture of an external orchestrator component, that
intercepts all communication between nodes on a ROS topic level.

distinct topic) to the orchestrator, it is also possible to separate callback executions
for the same topic at different nodes. For inputs into the orchestrator, such separation
is not required, since the orchestrator can ensure sequential execution of callbacks
which publish a message on the corresponding topics. Figure 3.10 shows an example
of a one-to-many connection between three nodes using one topic. When using the
orchestrator, M is still used as an output of S, but each receiving node now subscribes
to an individual input topic P1/M and P2/M.

The orchestrator ROS node is typically located in the same process as the data provider,
which would be a simulator or ROS bag player. This allows both components to
interact directly via function calls, which greatly simplifies the interface compared to,
for example, ROS service calls.

3.4.1 Callback Outputs
ROS callbacks may modify internal node state, but may also produce outputs on
other ROS topics. The orchestrator needs to know which outputs a callback may
have, and also when a callback is done, in order to allow new events to occur at the
node. The possible outputs are configured statically, as detailed in Section 3.6.1. If a
node omits one of the configured outputs dynamically, or if a node does not usually
have any outputs which are visible to the orchestrator, a status message must be
published, the definition of which is available in Listing 1. The omitted_outputs
field optionally names one or multiple topics on which an output would usually be
expected during this callback, but which are not published during this specific callback
invocation.
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S M

P1

P2

(a) Before interception: Data source S publishes to topic M , which is an input to nodes
P1 and P2.

S M O

P1/M

P2/M

P1

P2

(b) Interception using orchestrator O: The orchestrator subscribes to M and publishes
to individual input topics for each node P1 and P2, allowing individual callback
execution.

Figure 3.10: Visualization of the ROS topic interception of node inputs by the
orchestrator.

1 string node_name
2 string[] omitted_outputs

Listing 1: ROS message definition of the status message, which informs the
orchestrator that the specified node has completed its last callback.
Optionally, a list of omitted outputs can be specified.

3.4.2 Timer Callbacks
Intercepting topic inputs also allows controlling timer callback invocations, although
some limitations apply. Both in simulation and during ROS bag replay, node time is
usually already controlled by a topic input through the /clock topic. This allows the
node to run as expected during slower than real-time simulation and playback. Since
the clock messages only contain the current time (and not information such as the
playback rate), and ROS does not extrapolate this time, this forms a topic input that
triggers timer callbacks. Like any other topic input, this topic name can be remapped
to form a specific clock topic for each node, allowing triggering timer callbacks at
each node individually.

This approach is limited, however, when multiple timers exist at the same node:
Even if the timers are configured to different frequencies, the timer invocations will
inevitably occur at the same time at some point. In that instant, the /clock input
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triggers both (all) timers, without the ability to specifically target the callback of
an individual timer. With two callbacks running simultaneously (and depending on
the executor, possibly in parallel), nondeterministic message ordering may occur if,
for example, both timer callbacks publish a message to the same topic. Thus, using
multiple timers at the same node is only acceptable if the corresponding outputs are
separate. Additionally, simultaneous execution must not change the internal node
state nondeterministically, which may be ensured by using a single-threaded executor
that executes the timer callbacks sequentially in a consistent order.

Using only one timer per node eliminates this problem as well, although there remains
one instance where multiple timers fire at once: When each node receives the first
clock input, the internal clock jumps from zero to the initial simulation or recorded
time. This results in the execution of at most one “missed” timer callback, and, if the
clock input is a multiple of the timer period, one “current” timer callback. The latter
case is immediately observed with a simulation timer starting at a large multiple of
one second, and timers running at a fraction of one second. This is an especially
challenging situation since both callback invocations correspond to the same timer,
compared to separate timers above. This implies that both callbacks have exactly the
same outputs, making it impossible for the orchestrator to differentiate the outputs of
both callback executions. A desirable property of a ROS node may be that the node
itself only sets up timers when the node-local time has been initialized, which may
be possible using ROS 2 “lifecycle nodes”, which have the notion of an initialization
phase at node startup. In this work, however, it was considered acceptable to discard
the outputs of initial timer invocations in that case, since nodes can not usually be
expected to perform such initialization.

3.4.3 Callbacks for Time-Synchronized Topics
The message_filters package is not part of the ROS client library, but its popularity
and interaction with message callback execution make it a relevant component to
consider: This package provides convenient utilities for handling the use case in
which messages on two or more subscriptions are expected to arrive (approximately)
at the same time and need to be processed together. Specifically, it provides the
ApproximateTimeSynchronizer class which wraps multiple subscribers and calls a
single callback with all messages, as soon as messages have arrived on all topics within
a sufficiently small time window.

While this makes the node robust against variations in message reception time and
order, it complicates reasoning about the node’s behavior from the outside. The
time synchronizer introduces an additional state to the node in the form of cached
messages, which then influences whether a callback is executed or not for subsequent
incoming messages. Additionally, the callback behavior is now dependent on the
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message contents, since by default the messages are not synchronized by reception
time but by timestamp embedded inside the message (which might for example be
the acquisition time of contained measurement data).

For handling such callbacks using the orchestrator, the following approach has been
taken: For each input of the time synchronizer, it is initially assumed that the
combined callback will be invoked. An instance of ApproximateTimeSynchronizer
is additionally held at the orchestrator, which is then used to determine if the callback
is expected to execute or not for a particular input message. Since the message needs
to be forwarded even when no callback is expected, a pathological error case emerges.
Consider the case in which a ApproximateTimeSynchronizer is used to synchronize
messages on topics A and B, where A is published at a significantly higher rate than
B. The synchronizer may be parameterized in a way such that a message on B might
be correctly combined with any of the last few messages on A. This could lead to a
scenario where many messages are published on A, without receiving any confirmation,
before publishing a message on B, which causes the combined callback. The message
B might be combined nondeterministically with any message A, since for example,
the latest message on A might not even be received by the node yet.

3.5 Ensuring Sequence Determinism Using
Callback Graphs

Once the orchestrator has the ability to individually control callbacks at ROS nodes,
it can ensure a deterministic order of callback execution at each node, leading to
deterministic system execution. In order to avoid the sources of nondeterminism
presented in Section 3.2, the orchestrator constantly maintains a graph of all callbacks
which are able to execute in the near future. By introducing ordering constraints
between callbacks as edges in the graph, and only executing callbacks when those
constraints are met, the possibly nondeterministic situations presented above are
sufficiently serialized to guarantee a deterministic callback order. In the following,
the elements of the callback graph are discussed in detail:

A callback graph contains nodes for events that occur in the ROS system, the data
provider, and the orchestrator itself. Callback graph nodes, which each represent a
callback invocation, will be referred to as actions in the following, in order to clearly
distinguish them from ROS nodes, which represent individual software components
(that might execute actions at specific points in time). The orchestrator contains one
callback graph, which gets extended every time the next data input is requested. A
data input is any ROS message that is not published by a node within the system
under test, but originates from an external source, such as data generated by a
simulator or messages from a ROS bag. Completed actions are removed from the
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graph. Edges between actions represent dependencies in execution order: An edge
(u, v) from action u to action v implies that the action u must be executed after the
action v has run to completion. All outgoing edges from an action are created with
the action itself. Additional edges are not added at a later time, and edges are only
removed once one of the connected actions is removed. It should be noted that time
inputs on the /clock topic for triggering timer callbacks as described in Section 3.4.2
are not represented as actions, as they do not contain any message data that needs to
be buffered. Instead, the appropriate timer callback actions are created as soon as
the clock input is offered by the data provider. Once the actions are ready to execute,
a corresponding clock message is sent to the node to trigger the callback.

There are four distinct types of edges: CAUSALITY edges exist between actions that
have an intrinsic data dependency, which for ROS means one action is triggered by
an incoming ROS message, which the other action publishes. The ordering of two
actions connected by such an edge is guaranteed implicitly since one action is directly
triggered by the other. This means the orchestrator does not have to explicitly serialize
those callbacks.

SAME_NODE edges are inserted between actions that occur at the same ROS node. This
guarantees that multiple actions at the same node, such as the callbacks for multiple
different subscriptions, occur in the same order for every data input.

SAME_TOPIC edges are inserted from an action that publishes a specific topic, to
existing actions that are triggered by messages on that topic. This dependency
prevents message reordering and subscriber queue overflow, by ensuring that actions
that publish on a topic only run after all the actions which are triggered by a previous
message on that topic.

SERVICE_GROUP edges ensure deterministic execution involving service calls. The result
of a service call is considered to be dependent on the state of the service-providing
node, and all service calls are assumed to possibly alter that state. Similarly, all
other actions occurring directly at the service-providing node are also considered to
alter that node’s state. A service group for a particular service contains all actions
which may call the service and all actions which occur directly at the service provider
node. The SERVICE_GROUP edge is then added to all nodes in all service groups of
the services that a particular action may call. This ensures a deterministic execution
order of all actions which can modify the service-providers state.

To illustrate the effects of specific edge types, the scenario from Fig. 3.4 is considered
for two subsequent inputs. The resulting callback graph is shown in Fig. 3.11. Actions
corresponding to the first input are shown in the left half of the graph. CAUSALITY
connections drawn in blue show connections directly corresponding to the ROS node
graph: They connect each callback to the previous callback publishing the required
input data. SAME_NODE edges connect the corresponding callbacks between timesteps,
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and the two callbacks of node T within each timestep. This ensures that the callback
order at T is deterministic even if the processing times of P1 and P2 are variable.
The SAME_TOPIC edges in this example might seem redundant to the SAME_NODE
connections, the outgoing edge from the second data input, however, is required to
ensure that both inputs are not reordered before they arrive at the orchestrator. This
graph also shows additional nodes which do not directly correspond to callbacks
within the software stack under test: The input nodes represent data inputs that may
come from a ROS bag or the simulator. Buffer nodes represent the action of storing
a message at the orchestrator, and allow parallel execution by allowing SAME_TOPIC
dependencies to be made to specific outputs of callbacks instead of entire callbacks.
Some elements have been excluded from this graph for brevity: The callbacks at node
T do not have any output, which requires them to publish a status message. The
reception of this status message is usually represented in the graph analogous to the
buffer nodes.
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Figure 3.11: Callback graph for two inputs into a ROS graph with two parallel
processing paths as shown in Fig. 3.4. “Input” actions represent
the publishing of a topic by the data source. “Buffer” actions
represent the input of an intercepted topic at the orchestrator, po-
tentially for forwarding to downstream nodes. Message callbacks
at ROS nodes are represented as “<node name> Rx <topic>”.
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3.6 Node and System Description
In order to build the callback graph, information about the node behavior and system
configuration has to be available to the orchestrator. While some aspects of system
configuration, such as connections between nodes could be inferred during runtime
by using available introspection functionality in ROS, this is not possible for node
behavior. Also, since buffering of some topics is necessary, some connections between
nodes need to be redirected via the orchestrator, changing the system configuration.
This type of system configuration is usually made before starting the nodes and is
generally not possible during runtime.

To enable the reuse of node configuration information, the configuration is split into
node configuration and launch configuration. Both of those are implemented as static
configuration files in JSON format and are described in detail in the following.

3.6.1 Node Configuration
Each node requires a description of its behavior, in particular, which callbacks occur
at the node and what the effects of those callbacks are. A node configuration consists
of a list of callbacks and a list of provided services:

1 {
2 "name": "Trajectory Planning Node",
3 "callbacks": [ ... ],
4 "services": [ ... ]
5 }

Each callback specifies its trigger, possible service calls made during execution, its
outputs, and flags regarding closed-loop simulation and online reconfiguration (which
is described in detail in Section 3.7):

1 {
2 "trigger": { ... },
3 "outputs": [ Names of output topics ],
4 "service_calls": [ Names of services which may be called ],
5 "changes_dataprovider_state": false,
6 "may_cause_reconfiguration": false
7 }

The trigger specifies a timer, an input topic, or multiple input topics in the case of a
message-filter callback:

1 { "type": "timer", "period": 40000000 }

1 { "type": "topic", "name": "imu" }
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1 {
2 "type": "approximate_time_sync",
3 "input_topics": ["camera_info", "image"],
4 "slop": 0.1,
5 "queue_size": 4
6 }

3.6.2 Launch Configuration
The launch configuration describes the entire software stack under test. More specifi-
cally, it describes specific instances of nodes and connections between them. Each
node is identified by a unique name, and the type of node is specified by reference to
the corresponding node configuration file. Connections between nodes are specified
using name remappings, which assign a globally unique topic name to the internal
names used in the node configuration. In this example, an ego-motion estimation
node is instanced for the simulated “vhcl1800” vehicle, receiving the proper sensor
data input and providing the “/sil_vhcl1800/ego_motion_service” service:

1 "sil_vhcl1800_ego_motion_service": {
2 "config_file": ["orchestrator", "ego_motion_node_config.json"],
3 "remappings": {
4 "imu": "/sil_vhcl1800/imu",
5 "ego_motion_service": "/sil_vhcl1800/ego_motion_service"
6 }
7 }

With the corresponding node configuration:

1 {
2 "name": "Ego-Motion Service",
3 "callbacks": [{
4 "trigger": {"type": "topic", "name": "imu"},
5 "outputs": []
6 }],
7 "services": ["ego_motion_service"]
8 }

3.7 Dynamic Reconfiguration
Dynamically reconfiguring components during runtime (see Section 2.2) presents a
challenge to the orchestrator, as the software setup is usually specified in advance in
the launch configuration file.
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To support this use case in combination with the orchestrator, the following assump-
tions are made with respect to the reconfiguration process:

• The reconfiguration process is initiated by a ROS node during the execution of a
callback. It is configured beforehand which callback may cause a reconfiguration.

• Reconfiguration is instant and happens between two data inputs.

In the following, the ROS node which decides when to reconfigure the system is referred
to as the “reconfigurator”. To ensure deterministic execution before, during, and after
reconfiguration, coordination between the reconfigurator and orchestrator is necessary:
The orchestrator provides a “reconfiguration announcement” ROS service, which the
reconfigurator must call if a reconfiguration is to be performed. The orchestrator then
completes the processing of all in-progress and waiting callbacks, without requesting
the next data- or time input from the data provider. Once all callbacks are complete,
the orchestrator then calls the reconfigurator to execute the reconfiguration. Once
complete, the reconfigurator returns the new system configuration to the orchestrator.
This process is illustrated in Fig. 3.12.

After loading the new configuration, the orchestrator needs to restart execution. The
ROS communication topology might however change significantly during reconfigura-
tion. To ensure that all topics from every node are intercepted and subscribed by the
orchestrator, it performs the same initialization as on startup.

At the time of writing, some restrictions exist on the type of reconfiguration actions that
may be performed. In particular, creating or changing timers at an existing node, and
starting new nodes containing timers is not supported. This is not inherently impossible
and would be recommended as a useful extension for dynamic reconfiguration support.
Implementation of this feature was omitted however due to the lack of an immediate
requirement combined with the high implementation effort due to the implicit nature
of triggering timer callbacks by clock inputs and the timer behavior when receiving
the first clock input.

3.8 Launch System
The ROS 2 launch system is utilized to perform the initial topic interception via
the orchestrator by remapping the corresponding topic names. The orchestrator
provides the functionality to automatically generate the list of required remap-
pings from the launch and node configuration files. These remappings map di-
rectly from the node-internal name to the intercepted topic name of the format
/intercepted/{node_name}/sub/{topic_name}. By using node-specific remapping
rules of the form nodename:from:=to, all remappings can be generated in the same
place and then be applied at once, which allows wrapping an existing launch file
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Figure 3.12: Communication between orchestrator and reconfigurator dur-
ing the dynamic reconfiguration step. The first call-
back at the reconfigurator is a message callback with the
may_cause_reconfiguration flag set. The second callback is
the execution of the reconfiguration service call.
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without making any modifications to it. The following shows an example launch file
that starts the software stack under test by first generating the required remappings
in line 3 and then including the original launch file below.

1 def generate_launch_description():
2 return LaunchDescription([
3 *generate_remappings_from_config(
4 "orchestrator",
5 "sil_reconfig_launch_config.json"
6 ),
7 IncludeLaunchDescription(
8 PythonLaunchDescriptionSource([
9 PathJoinSubstitution([

10 FindPackageShare('platform_sil'),
11 'launch/sil.py'
12 ])
13 ])
14 )
15 ])

A limitation exists with respect to the already existing launch file due to the capabilities
of the node-specific remapping in ROS: The nodename: prefix which is used to restrict
the remapping rule to one specific node, does not accept namespaces in the node name.
This might necessitate changing the use of ROS namespaces to prefixes (without a
forward slash separator) for node names in the existing launch files. Note that this
limitation only applies to node names, and not to topic names.





4 Evaluation

In this chapter, the functionality and applicability of the proposed framework will
be evaluated. In Section 4.1, the behavior with and without the orchestrator in the
minimal examples presented in Section 3.2 is verified. Section 4.2 then introduces
the experimental setup used for further evaluation, which represents a real use case
utilizing an existing autonomous-driving software stack. The process of integrating
the existing components with the orchestrator is covered in Section 4.3, followed by
an evaluation and discussion of using the orchestrator in the presented use case in
Section 4.4. In Section 4.5, the impact of using the orchestrator on execution time is
explicitly assessed, and approaches for improvement are discussed.

4.1 Verification of Functionality
In order to verify the functionality of the orchestrator, without depending on existing
ROS node implementations, individual test cases for specific sources of nondeterminism
as well as a combined mockup of an autonomous driving software stack were developed.
In the following, each of the examples containing sources of nondeterministic callback
sequences identified in Section 3.2 is individually evaluated.

4.1.1 Lost or Reordered Messages
To verify that the problem of lost messages due to overflowing subscriber queues, as
introduced in Section 3.2.1, is solved by the orchestrator, a test case was set up: A
data source S publishes messages at a fixed frequency. The messages are received
by the node under test P , which has a fixed queue size (of three messages in this
example), and a varying processing time that on average is significantly slower than the
period of message publishing. After processing, P publishes the result on a different
topic. This behavior might correspond to a simulator running at a fixed frequency,
and a computationally expensive processing component such as a perception module,
running on a resource-constrained system.

Figure 4.1 shows the sequence of events when running this test: The first timeline
shows the periodic publishing of input messages by S. The second timeline shows
the callback duration of node P . It can be seen that once the processing of the
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Figure 4.1: Sequence diagram showing dropped messages due to subscriber
queue overflow, with a subscriber queue size of 3 at P . The
corresponding ROS graph is shown in Fig. 3.2.
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Figure 4.2: Sequence diagram showing a slowdown of the data source to prevent
dropping messages by overflowing the subscriber queue.

first message finishes, processing immediately continues for message 5, which is the
third-recent message published at that point in time, skipping messages 2, 3, and 4
which were published during processing. During the processing of message 5, four
further messages are discarded. The exact number of skipped messages depends on
the callback duration, which in this case is deliberately randomized but is usually
highly dependent on external factors such as system load.

When using the orchestrator, the message publisher is still configured to the same
publishing rate, but waits for the orchestrator before publishing each message. Fig-
ure 4.2 shows that each message is now processed, regardless of callback duration.
This necessarily slows down the data source, which can not be avoided without risking
dropping messages from the subscription queue at the receiving node.

By only sending messages to a node once the processing of the previous message is
completed, reordering of messages by the middleware is also prevented. This is not
explicitly demonstrated here but follows immediately from the fact that only one
message per topic is being transmitted at any point in time.

4.1.2 Inputs From Parallel Processing Chains
To verify deterministic callback execution at a node with multiple parallel inputs,
the example introduced in Section 3.2.2 with the ROS graph shown in Fig. 3.4 is
realized. Figure 4.3 shows all callback invocations resulting from two inputs from S.
Without the orchestrator, the combination of nondeterministic transmission latency
and variable duration of callback execution at P1 and P2 results in a nondeterministic
execution order of both callbacks at T resulting from one input from S.
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Figure 4.3: Sequence diagram showing the execution of two parallel processing
nodes P1 and P2 with nondeterministic processing time. This
results in a nondeterministic callback order at T , which subscribes
to the outputs of both chains. The corresponding ROS graph is
shown in Fig. 3.4.
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Figure 4.4: Sequence diagram showing a deterministic callback order at T
despite nondeterministic callback durations at P1 and P2 as an
effect of the orchestrator on the behavior shown in Fig. 4.3.

For input 1, P1 finishes processing before P2, and no significant transmission latency
occurs, which causes T to process the message on D1 before D2. Following input 2,
P2 is slightly faster than P1 resulting in a different callback order compared to the
first input.

Using the orchestrator, the callback order changes, as visualized in Fig. 4.4. For
the first and third data input, P1 requires more processing time than P2. This
would ordinarily allow the D2 callback at T to execute before the D1 callback. The
orchestrator however ensures a deterministic callback order at T for every data input
from S, by buffering the D2 message until T finishes processing D1. Note that
the orchestrator does not implement a specific callback order defined by the node
or externally. It only ensures that the order is consistent over multiple executions.
The actual order results from the order in which nodes and callbacks are listed in
configuration files, but this is not intended to be adjusted by the user. If a node
requires a distinct receive order, it must implement appropriate ordering internally, to
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ensure correct operation without the orchestrator. From the point of the orchestrator,
consistently ordering P2 before P1 would have also been a valid solution.

4.1.3 Multiple Publishers on the Same Topic
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Figure 4.5: Sequence diagram showing serialized callback executions of nodes
P1 and P2, which is required to achieve a deterministic callback
order at T in this example, since P1 and P2 use the same output
topic. The corresponding ROS graph is shown in Fig. 3.5.

This example extends the previous scenario from Section 4.1.2 such that both pro-
cessing nodes publish their result on the same topic, corresponding to the example
introduced in Section 3.2.3, with the ROS graph shown in Fig. 3.5. Again, this results
in nondeterministic callback order at T , with a callback order identical to the previous
case shown in Fig. 4.3. In this case, both callback executions at T are of the same
callback, while previously two distinct callbacks were executed once each.

Because only node inputs are intercepted, this scenario requires serializing the callbacks
at P1 and P2. Figure 4.5 shows the resulting callback sequence when using the
orchestrator. By ensuring that processing at P2 only starts after the output from P1
is received, reordering of the messages on D is prevented. Note that while the different
colors of the callbacks at T correspond to the sources of the corresponding input, both
inputs cause the same subscription callback to be executed at the node. Generally,
the node would not be able to determine the source of the input message.

Since the processing time of P2 is longer than the processing time of the first callback
at T in this example, the orchestrator causes a larger overhead for this node graph
compared to the previous one. P2 starts processing simultaneously to the first T
callback, causing T to be idle between the completion of the first callback and the
completion of processing at P2. It should be noted, however, that even though the
total processing time exceeds the input frequency of S for input 2, the data source was
not required to slow down. Figure 4.5 shows that T is still running while P1 processes
input 3. This kind of “pipelining” happens implicitly because the callback execution
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at P1 has no dependency on the callback at T , and by eagerly allowing inputs from
S. In the current implementation, the orchestrator requests the publishing of the
next message by the data provider as soon as the processing of the last input on the
same topic has started. In the case of a time input, the input is requested as soon
as no actions remain which are still waiting on an input of a previous time update.
Both kinds of input may additionally be delayed if the system is pending dynamic
reconfiguration, or if a callback is still running that may cause a reconfiguration at
the end of the current timestep.

4.1.4 Parallel Service Calls
Figure 3.6 shows the node setup for this example, which has been identified in
Section 3.2.4. A single message triggers a callback at three nodes, one of which (SP )
also provides a ROS service. The two other nodes N1 and N2 call the provided
service during callback execution. The resulting order of all three callbacks at SP in
response to a single message input is nondeterministic, as shown in Fig. 4.6. Since
the orchestrator only controls service calls by controlling the callback they originate
from, it is necessary to serialize all callbacks interacting with the service, which in
this case are the message callbacks at N1, N2, and SP .

The resulting callback sequence is shown in Fig. 4.7. By serializing the callbacks
at N1 and N2, the order of service callbacks at SP is now fixed. In this example,
it is again apparent that parallel execution of the N1 and N2 callbacks might be
possible while still maintaining a deterministic callback order at SP . This limitation
is discussed in detail in Section 4.1.5.
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Figure 4.6: Sequence diagram showing the parallel execution of callbacks at
N1 and N2. The hatched area within the callback shows the
duration of service calls, which are made to a service provided
by SP , upwards arrows represent responses to service calls. The
variable timing of the service calls results in a nondeterministic
callback order at SP . The corresponding ROS graph is shown in
Fig. 3.6.
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Figure 4.7: Sequence diagram showing the serialized callbacks from Fig. 4.6.
Serialization of the callbacks at N1 and N2 leads to a deterministic
callback order at SP .
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4.1.5 Discussion
The ability of the orchestrator to ensure a deterministic callback sequence at all nodes
has been shown for the minimal nondeterministic examples which were identified
in Section 3.2. While all examples show successful deterministic execution, some
limitations and possible improvements in parallel callback execution and thereby
execution time are apparent and will be discussed in the following.

In the case of concurrent callbacks which publish on the same topic, parallelism could
further be improved by extending the topic interception strategy. Currently, only the
input topics of each node are intercepted by the orchestrator, the output topics are
not changed. If the output topics of nodes were also remapped to individual topics,
all SAME_TOPIC dependencies would be eliminated. In the example from Fig. 4.4, this
would again allow the concurrent callbacks P1 and P2 to execute in parallel, with
each output being individually buffered at the orchestrator. The individually and
uniquely buffered outputs could then be forwarded to T in a deterministic order,
effectively resulting in a callback execution behavior as in Section 4.1.2.

The last example of concurrent service calls (Section 4.1.4) also shows how this method
of ensuring deterministic execution comes with a significant runtime penalty. Here,
the orchestrator now requires all callbacks to execute sequentially, while previously
all callbacks started executing in parallel, with the only point of synchronization
being the service provider, depending on available parallel callback execution within
the node. An important factor determining the impact of this is the proportion of
service-call duration to total callback duration for the calling nodes. If the service
call is expected to take only a small fraction of the entire callback duration, a large
improvement in execution time could be gained by allowing parallel execution of the
callbacks N1 and N2, which both call the service. This might be possible by explicitly
controlling service calls directly instead of controlling the entire callback executing
that call. In the example shown in Fig. 4.7, serializing only the service calls would
allow the portion of the N2 callback before the service call to execute concurrently
to N1, and the portion after the service call to overlap with the message callback at
SP .

Another possible extension to improve parallelism in scenarios involving service calls is
to allow specifying that some actions might interact with the service provider without
modifying its state. Currently, all actions interacting with the service (by running
at the same node, or calling the service) are assumed to modify the service provider
state. To ensure deterministic execution, synchronization between non-modifying
actions is however not required. If an action only inspects the service providers’ state
without modifying it, the order with respect to other such actions would not influence
its result. Thus, it would suffice to synchronize non-modifying actions with previous
modifying actions, instead of all previous actions.
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In Section 4.1.2, it was identified that although the callback order at each node is
not deterministic, a different order of callbacks in response to a single input might
be expected during normal operation. This does not reduce the applicability of
the orchestrator, since nodes that explicitly require a specific callback order must
implement measures to ensure that anyways. It is however still desirable to keep the
system behavior when using the orchestrator as close as possible to the expected or
usual system behavior without the orchestrator. One proposed future addition is thus
allowing nodes to optionally specify an expected callback duration in the corresponding
configuration file. This information may then be used by the orchestrator to establish
a more realistic callback ordering.

4.2 System Setup
In the following, the integration of the orchestrator with parts of an already existing
autonomous driving software stack is evaluated. This section introduces the system
setup and example use case, which will be utilized in Sections 4.3 and 4.4.

In this use case, the aim is to calculate metrics on the performance of a multi-object
tracking module, which tracks vehicles that pass an intersection using infrastructure-
mounted sensors. The ROS graph of the setup is shown in Fig. 4.8. The software stack
consists of this tracking module, as well as components required to autonomously
control one of the vehicles passing the intersection in the test scenario. A simulator
provides measurements in the form of (possibly incomplete) bounding boxes and object
class estimations, simulating both the sensor itself as well as an object detection
algorithm. Alternatively, the same measurements are played back from a ROS bag.
The tracking module receives measurements on a total of 12 individual topics for
each sensor. Outputs from the tracking module, as well as ground truth object states
provided by the simulator, are recorded by dedicated recorder nodes. This allows
later post-processing and evaluation.

The part of the software stack controlling the autonomous vehicle consists of a second
instance of the tracking module, a component estimating the vehicle’s ego-motion
as well as a trajectory planning and control module. The vehicle-local tracking
module receives measurements from five simulated on-vehicle sensors similar to the
infrastructure tracking module. The planning module receives information about
the vehicle state from the simulator and produces acceleration and steering angle
commands which are fed back to the simulator. Both the planning and local tracking
modules may call the ego-motion service provided by the corresponding node while
executing any callback. The other vehicles present in the scenario are fully controlled
by the simulator.
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Figure 4.8: Node graph of the system setup used within this chapter. The
connections between the simulator and both tracking nodes repre-
sent multiple parallel ROS topics. Dashed arrows show potential
service calls.

The simulation is run until the controlled vehicle reaches a predefined area. When
using recorded measurement data from a ROS bag, the scenario ends once every
recorded measurement has been processed. The recorded results of the tracking module
and the recorded ground truth data are then used to calculate application-specific
metrics to assess the performance of the multi-object tracking algorithm.

4.3 System Integration
To determine the feasibility of integrating the proposed framework into existing
software, the framework was applied to the scenario for testing a multi-object tracking
module introduced in Section 4.2. In this section, the necessary modifications to each
existing component are discussed. Sections 4.3.1 and 4.3.2 will cover the integration
of both “data provider” components, a simulator, and the ROS bag player, which
will contain the orchestrator. Section 4.3.3 covers the integration of the ROS nodes
present in the test scenario.
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4.3.1 Simulator
The orchestrator represents an individual component (see Section 3.4), but is located
within the same process as the data provider, which in this case is the simulator.

The orchestrator component is instantiated within the simulator and then provides
an API that the simulator must call at specific points to ensure deterministic execu-
tion. To instantiate and start the orchestrator, the simulator must also provide the
orchestrator with the appropriate launch configuration. All API calls are of the form
wait_until_<condition> and usually return a Future object that must be awaited
before executing the corresponding actions. The wait_until_publish_allowed
function must be inserted before publishing any ROS message on any topic. Before
publishing a /clock message, the new time must be provided to the orchestrator using
the dedicated wait_until_time_publish_allowed API call, which is required for the
orchestrator to prepare for eventual timer callbacks. Before changing the internal sim-
ulation state, the wait_until_dataprovider_state_update_allowed method must
be called. This usually happens by performing a simulation timestep, and this method
ensures synchronizing this timestep with expected inputs present in a closed-loop simu-
lation, such as vehicle control inputs. The wait_until_pending_actions_complete
method is used to ensure all callbacks finish cleanly once the simulation is done.

To enable closed-loop simulation, the simulator must accept some input from the
software under test, such as a control signal for an autonomous vehicle in this case.
This implies a subscription callback, which must be described in a node configuration
file. If this callback does not publish any further messages, a status message must be
published instead.

4.3.2 ROS Bag Player
ROS already provides a ROS bag player, which could be modified to include the
orchestrator. Modifying the official ROS bag player would have the advantage of
keeping access to the large set of features already implemented, and preserving the
known user interface. Some aspects of the official player increase the integration effort
considerably, however. Specifically, publishing of the /clock topic is asynchronous to
message playback and at a fixed rate. While this has some advantages for interactive
use, it interferes with deterministic execution and would require a significant change in
design to accommodate the orchestrator. Furthermore, as with the initial architecture
considerations of the orchestrator, it is undesirable to fork existing ROS components
and maintain alternative versions, as this creates an additional maintenance burden
and might prevent the easy adoption of new upstream features.

Thus, a dedicated ROS bag player is implemented for use with the orchestrator instead
of modifying the existing player. This does not have the same feature set as the official
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player but allows for evaluation of this use case with a reasonable implementation
effort. To integrate the orchestrator, the ROS bag player requires the same adaptation
as the simulator, except for the wait_until_dataprovider_state_update_allowed
call which is not applicable without closed-loop execution. Besides deterministic
execution, a new feature is reliable faster-than-realtime execution, details of which
are discussed in Section 4.5.

4.3.3 ROS Nodes
The individual ROS nodes of the software stack under test are the primary concern
regarding implementation effort, as there is usually a large number of ROS nodes,
and new ROS nodes may be created or integrated regularly.

The integration effort of a ROS node depends on how well the node already matches
the assumptions made and required by the orchestrator: The orchestrator assumes
that all processing in a node happens in a subscription or timer callback, and that
each callback publishes at most one message on each configured output topic. For
callbacks without any outputs or callbacks that sporadically omit outputs, a status
message must be published instead (see Section 3.4.1).

Planning Module

The integration effort of the trajectory planning and control module is significant
because the module violates the assumption that all processing happens in timer and
subscription callbacks.

The planning module contains two planning loops: A high-level planning step runs
in a dedicated thread as often as possible. A low-level planner runs separately at a
fixed frequency. Handling incoming ROS messages happens asynchronously with the
planning steps in a third thread.

While this architecture may have some advantages for runtime performance, it prevents
external control via the orchestrator. This represents an inherent limitation for the
orchestrator. Publishing of messages from outside a ROS callback is not able to be
supported in any way, since it can not be anticipated in advance, making it impossible
to integrate into the callback graph and synchronize it with other callbacks (see
Section 3.5). In order to ensure compatibility with the orchestrator, an optional mode
has been introduced in which both planning loops are replaced with ROS timers.

This does make the planning module compatible with the orchestrator, but introduces
a problem that should have explicitly been avoided by the specific software architecture
chosen: It runs the planning module in a completely different mode when using the
orchestrator than without using the orchestrator. This reduces the relevance of testing



44 Evaluation

inside the orchestrator framework since specific problems and behaviors might only
occur with the manual planning loop.

It might be possible in some cases to change the node in a way such that the usual
mode of execution is compatible with the orchestrator, and thus avoids the problem
of two discrete modes, but this is not possible in general. In the case of the trajectory
planning module, for example, this is not desirable due to the integration of the
planning loop with a graphical user interface that is used to interactively change
planner parameters and to introspect the current planner state.

Tracking Module

While the tracking module does only process data within ROS subscription callbacks,
the input-output behavior is still not straightforward: The tracking module employs
a sophisticated queueing system, which aims to form batches of inputs from both
synchronized and unsynchronized sensors, while also supporting dynamic addition and
removal of sensors. Additionally, while processing is always triggered by an incoming
message, the processing itself happens in a dedicated thread in order to allow the
simultaneous processing of ROS messages.

The input-output behavior itself is configurable such that only the reception of specific
sensor inputs cause the processing and publishing of a “tracks” output message.
This is done to limit the output rate and reduce processing requirements. Due to
the queueing, this does however not imply that reception of the configured input
immediately causes an output to appear. It may be the case that additional inputs
are required to produce the expected output.

This behavior can however still be handled by the node configuration without requiring
major modification to the tracking module: The node configuration was modified such
that any input may cause an output to be published. Then, the processing method
was adapted such that a status message is published that explicitly excludes the
tracks output using the omitted_outputs field when no tracks will be published. In
some circumstances, specifically following dropped messages, the queueing additionally
results in multiple outputs in a single callback. This behavior is described in detail in
Section 4.4.2 and is not currently supported by the orchestrator.

While this is a pragmatic solution for describing the otherwise hard to statically
describe input-output behavior of the tracking module, declaring more output topics
than necessary for a callback is usually undesired: Subsequent callbacks which actually
publish a message on the specified topic need to wait for this callback to complete
due to a false SAME_TOPIC dependency. Additionally, the callback graph will contain
possibly many actions resulting from the anticipated output. Those actions are then
again false dependencies for subsequent actions, not only as SAME_TOPIC dependencies
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but also SAME_NODE and SERVICE_GROUP edges. These false dependencies might reduce
the number of callbacks able to execute in parallel and might force callback executions
to be delayed more than necessary to ensure deterministic execution. Once a status
message is received which specifies that the output message will not be published,
the additional actions are removed, which then allows the execution of dependent
actions.

Recorder Node and Ego-Motion Estimation

Both the nodes for recording the output of the tracking module and the ego-motion
estimation match the assumptions made by the orchestrator and require very little
integration effort, although some modification was necessary. Both nodes only have
topic input callbacks that would usually not cause any message to be published,
requiring the publishing of a status message to inform the orchestrator of callback
completion.

The ego-motion module is the only node in the experimental setup offering a service
used during the evaluation. This does however not require any modification within
the node, as service calls are controlled by controlling the originating callbacks. It is
required however to list the service in the node configuration, to ensure a deterministic
order between service calls and topic-input callbacks at the node.

4.3.4 Discussion
In Section 3.3, the design goals towards the integration of existing nodes were estab-
lished as minimizing the required modification to nodes, maintaining functionality
without the orchestrator, and allowing for external nodes to be integrated without
modifying their source code.

The implemented approach meets these goals to varying degrees. The integration
of existing components with the orchestrator requires a varying amount of effort,
depending primarily on how well the component matches assumptions made by
the orchestrator. ROS nodes that fully comply with the assumptions made by the
orchestrator and always publish every configured output require only a configuration
file describing the node’s behavior, which also works for external nodes without access
to or modification of their source code. Nodes that have callbacks without any output
and nodes that may omit some or all configured outputs in some callback executions
require publishing a status output as described in Section 3.4.1 after a callback is
complete. Since this only entails publishing an additional message, this modification
does not impede the node’s functionality in any way when not using the orchestrator.
Nodes that fully deviate from the assumed callback behavior require appropriate
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modification before being suitable for use with the orchestrator, as was illustrated
with the tracking and planning modules in Section 4.3.3.

Creating the node configuration file does not present a significant effort for initial
integration, but maintaining the configuration to match the actual node behavior
is essential. Although the orchestrator can detect some mismatches between node
behavior and description, omitted outputs and services can not be controlled by the
orchestrator and might lead to nondeterministic system behavior.

While the model of ROS nodes that only execute ROS callbacks, which then publish
at most one message on each configured output topic, is clearly not sufficient for all
existing ROS nodes, it does apply to a wide class of nodes in use. Nodes such as
detection modules and control algorithms often operate in a simple “one output for
each input” way or are completely time triggered, executing the same callback at a
fixed frequency. Such nodes are not part of this experimental setup, since the specific
simulator in use already integrates the detection modules.

4.4 Application to existing Scenario
In this section, the effect of using the orchestrator in the use case introduced in
Section 4.2 is evaluated. In the following, the ability of the orchestrator to ensure
deterministic execution up to the metric-calculation step is demonstrated using both
the simulator and recorded input data from a ROS bag, as well as combined with
dynamic reconfiguration during test execution.

4.4.1 Simulator
When evaluating the tracking module in the previously introduced scenario, the
MOTA and MOTP metrics introduced in Section 2.3.1 are calculated. To calculate
these metrics, the tracking outputs are recorded together with ground truth data
from the simulator during a simulation run. Those recordings are then loaded and
processed offline. When running the evaluation procedure multiple times, it can be
observed that the resulting values differ for each run, as shown in Fig. 4.9. This is
due to nondeterministic callback execution during evaluation: Both the simulator and
the trajectory planning module run independently of each other, and the callback
sequence of the multiple inputs to the tracking module is not fixed.

When running the simulation using the orchestrator, the variance in the calculated
metrics is eliminated. This shows that in this example the orchestrator successfully
enabled the use case of repeatable execution of test cases for evaluating a software
module inside a more complex system.
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Figure 4.9: Evaluation of the MOTA and MOTP metrics in the scenario
introduced in Section 4.2 over multiple simulation runs, both with
and without the orchestrator.

Not only are the calculated metrics consistent, the deterministic execution as ensured
by the orchestrator results in bit-identical outputs of the tracking module for every
simulation run, and thus exact equality of the recordings generated. This enables
additional use cases for testing such as easily comparing the output of the module
before and after presumably non-functional changes are made to the source code.
Previously, such a comparison would require parsing the recorded results, calculating
some similarity measure or distance between the expected and actual results, and
applying some threshold to determine equality. Now, simply comparing the files
without any semantic understanding of the contents is possible.

4.4.2 ROS Bag
In order to test the use case of ROS bag replay, the player implemented in Section 4.3.2
is used. Although the ROS bag player provides inputs in deterministic order, the
characteristics of the input data are different from the simulator. During the recording
of the ROS bag, the sensor input topics and pre-processing nodes are subject to
nondeterministic ROS communication and callback behavior. This results in a ROS
bag with missing sensor samples (due to dropped messages as well as unexpected
behavior of real sensors) and reordered messages (due to nondeterministic transmission
of the messages to the ROS bag recorder). All those effects would usually not be
expected from a simulator, which produces predictable and periodic inputs.

This does not present a problem for the orchestrator: Since the callback graph
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construction is incremental for each input, the only a priori knowledge the orchestrator
requires is the API call from the data provider informing the orchestrator of the next
input, and the node and launch configurations to determine the resulting callbacks.
Specifically, the orchestrator does not require information such as expected publishing
frequencies or periodically repeating inputs at all.

In order to reuse the existing test setup, a ROS bag was recorded from the outputs
of the simulator. To simulate the effects described above, the ROS bag is manu-
ally modified by randomly dropping messages and randomly reordering recorded
messages.

Using the multi-object tracking module was not possible, however, since the high
rate of dropped messages causes a callback behavior that can not be modeled by
the node configuration as introduced in Section 3.6.1. In addition to the behavior
described in Section 4.3.3 of zero or one output for each measurement input, certain
combinations of inputs may cause multiple outputs from one input callback. This is
due to a sophisticated input queueing approach, that forms batches of inputs with
small deviations in measurement time, that only get processed once a batch contains
measurements of all sensors. In case of missing measurements, a newer batch might be
complete while older, incomplete batches still exist. The queueing algorithm assumes
in that case that the missing measurements of the old batches will not arrive anymore
(ruling out message reordering, but allowing dropping messages), and processes the
old batches, producing multiple outputs in one callback. Handling more outputs than
expected is not possible for the orchestrator since the orchestrator must determine
when a callback is completed to allow the next input for the corresponding node. If
a callback publishes additional outputs after it is assumed to have been completed
already, the orchestrator can not identify the source of the additional output or wrongly
assigns the output to the next callback expected to publish on the corresponding
topic.

This queueing also makes the tracking module robust against any message reordering
between the ROS bag player and the module itself, resulting in deterministic execution
even without the orchestrator and at high playback speed. When using a ROS bag
with reordered, but without dropped messages, the experimental setup can be verified
and performs as expected with a ROS bag as the data source instead of a simulator,
which also shows that the orchestrator can successfully be used in combination with
existing node-specific measures to ensure deterministic input ordering. The further
behavior of the orchestrator remains unchanged, meaning nondeterminism in larger
systems under test such as the cases demonstrated in Section 4.1 is prevented.

Furthermore, when using ROS bags as the data source it may be possible to easily
maximize the playback speed without manually choosing a rate that does not over-
whelm the processing components causing dropped messages. More details on this
specific use case will be given in Section 4.5.
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{
"name": "sil_reconfigurator",
"callbacks": [

{
"trigger": {

"type": "timer",
"period": 1000000000

},
"outputs": [],
"may_cause_reconfiguration": true

}
]

}

Listing 2: Node configuration for the reconfiguration node mockup.

4.4.3 Dynamic Reconfiguration
To test the orchestrator in a scenario including dynamic reconfiguration, the previous
setup was extended by such a component. Since a module for dynamic reconfiguration
of components or the communication structure was not readily available, a minimal
functional mockup was created: A “reconfigurator” component with a periodic timer
callback decides within this callback if the system needs to be reconfigured, and
then executes that reconfiguration. The node description for the reconfiguration
node is given in Listing 2. In this example, the reconfiguration reduces simulated
measurement noise, which could simulate switching to a more accurate, but also
more computationally demanding perception module. The mock reconfigurator
always chooses to reconfigure after a set time. A real working counterpart would
require additional inputs such as the current vehicle environment, which are omitted
here.

Figure 4.10 shows the OSPA distance (see Section 2.3.1) between the tracking result
and the ground truth object data from the simulator over multiple simulation runs.
The OSPA distance was chosen as a metric in this case since it is calculated for every
time step instead of as an average over the entire simulation run, as is the case with
the MOTA and MOTP metrics used above. This allows evaluation of how the metric
changes during the simulation run and clearly shows the reconfiguration step. It is
apparent that the reconfiguration module successfully switched to a lower measurement
noise at t = 7s. Importantly, however, the evaluation results of the multiple runs
do not completely overlap. This is again due to nondeterministic callback execution
within the tracking, planning, and simulator modules. The differences between the
runs, plotted in Fig. 4.11, show that all runs deviate from the first run, with two runs
showing the largest difference at the exact time of reconfiguration.
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Figure 4.10: OSPA distance of tracks versus ground truth during multiple
simulation runs. The dashed vertical line marks the timestep in
which the runtime reconfiguration occurs.
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Figure 4.11: Absolute difference in OSPA distances between the simulation
runs. The dashed vertical line marks the timestep in which the
runtime reconfiguration occurs.
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Figure 4.12: OSPA distance of tracks versus ground truth over time, compari-
son between initial simulation run and simulation while using the
orchestrator.

Using the orchestrator, the measured tracking result does differ from the previous
simulation runs, as shown in Fig. 4.12. The output is however deterministic and
repeatable, even if a reconfiguration occurs during the simulation. Again, this
demonstrates the successful application of the orchestrator framework, even in the
presence of dynamic reconfiguration at runtime.

4.4.4 Discussion
In Section 4.4, the successful implementation of two design goals was verified: First,
Sections 4.4.1 and 4.4.2 demonstrate successful use of the orchestrator with both a
simulator and ROS bag as data sources. Notably, no additional requirements are
placed on the specific ROS bag used, allowing the use of the orchestrator with already
existing recorded data. Secondly, Section 4.4.3 shows that the guarantees of the
orchestrator hold when the system is dynamically reconfigured at runtime. These tests
represent exactly the use case of evaluation of a component within a larger software
stack that motivated this work, that is able to run repeatedly and deterministically
using the orchestrator.

In Section 4.4.2, a limitation of the orchestrator in terms of modeling a node’s output
behavior was reached. In order to use such nodes with the orchestrator in the future,
an extension to the current callback handling might be required and is proposed here:
A solution to this problem might be to allow the node to publish a status message
after every callback, which specifies the number of outputs that have actually been
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published in this specific callback invocation. This would allow the orchestrator to
ensure the reception of every callback output, and prevent wrong associations of
outputs to callbacks. As additional messages on the corresponding topics would also
cause additional downstream callbacks for subscribers of those topics, this approach
might however introduce additional points of synchronization across the callback
graph.

4.5 Execution-Time impact
Due to the required serialization of callbacks and buffering of messages, a general
increase in execution time is to be expected when using the orchestrator. In the
following, this impact is measured for a simulation use case and the individual
sources of increased execution time, as well as possible future improvements, are
discussed.

4.5.1 Analysis
To measure the impact of topic interception, the induced delay of forwarding a message
via a ROS node is measured. In order to compensate for latency in the measuring
node, the difference in latency for directly sending and receiving a message in the same
node versus the latency of sending a message and receiving a forwarded message is
measured. When using a measuring and forwarding node implemented in Python and
using the “eProsima Fast DDS” middleware, the latency from publishing to receiving
increases from a mean of 0.64 ms to 0.99 ms. This induced latency of 0.35 ms on
average is considered acceptable and justifies the design choice of controlling callbacks
by intercepting the corresponding message inputs.

Figure 4.13 shows a comparison of execution time for one simulation run of the
scenario introduced in Section 4.2. The first bar shows the runtime without using the
orchestrator, the bottom two bars show the time when using the orchestrator.

The simulator currently offers two modes of execution: fast executes the simulation
as fast as possible, while real_time slows down the simulation to run at real-time
speed if the simulation itself would be able to run faster than real-time. Using the
fast mode is only appropriate combined with the orchestrator or some other method
of synchronization between the simulator and software under test. If the simulator is
not able to run in real-time, deliberate delays to ensure real-time execution should
already be zero. Since Fig. 4.13 still shows an increase in runtime for using the
real_time mode compared to the fast mode, the orchestrator is considered with the
fast execution mode in the following. Nonetheless, it is apparent that the orchestrator
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Figure 4.13: Comparison of execution time for one simulation run between not
using the orchestrator, using the orchestrator with faster than
real-time execution, and using the orchestrator with real-time
execution.

causes a significant runtime impact as the execution time is increased by about 73%
in the fast case.

Evaluating the orchestrator itself for execution time, it can be found that during a
simulation run, the callback for intercepted message inputs runs on average 0.6 ms,
and the callback for status messages runs 0.9 ms. The API functions for waiting until
publishing a time or data input execute in 0.9 ms and 0.5 ms. This sums up to more
than 12.3 seconds spent executing interception and status callbacks, which in this
scenario happens within the simulator. The simulator furthermore spends about 5
seconds executing orchestrator API calls.

The remaining increase in execution time is explained by serializing the execution of
dependent callbacks. The vehicle tracking and planning components may both call
the ego-motion service, which prevents parallel execution. The speed of publishing
inputs by the simulator is greatly reduced especially for nodes like the tracking
module, which has a relatively large number of inputs (12, in the evaluated examples)
that are published sequentially. This would usually happen without waiting, but
the orchestrator requires confirmation from the tracking module that an input has
been processed before forwarding the next input to ensure a deterministic processing
order.

Finally, the orchestrator requires the simulator to receive and process the output
from the planning module before advancing the simulation. This is realized by the
changes_dataprovider_state flag for the corresponding callback in the node con-
figuration file, which causes the wait_until_dataprovider_state_update_allowed
API call to block until the callback has finished. For any simulator, the “dataprovider
state update” corresponds to executing a simulation timestep, which results in an
effective slowdown of each simulation timestep to the execution time of the longest
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path resulting in some input to the simulator.

The other available flag for callbacks, may_cause_reconfiguration, presents a similar
point of global synchronization: This flag is applied to callbacks of a component that
may decide dynamically reconfigure the ROS system, as described in Section 2.2,
based on the current system state (such as vehicle environment, in the autonomous
driving use case). To ensure that the reconfiguration always occurs at the same point
in time with respect to other callback executions at each node, any subsequent data
inputs and dataprovider state updates must wait until either the reconfiguration
is complete or the callback has finished without requesting reconfiguration. This
presents an even more severe point of synchronization, since it immediately blocks
the next data inputs from the simulator, and not only the start of the next timestep,
while still allowing to publish the remaining inputs from the current timestep.

4.5.2 Discussion
Using the orchestrator significantly increased execution time in the simulation scenario.
To reduce the runtime overhead caused by the orchestrator, multiple approaches are
viable. As significant time is spent executing orchestrator callbacks and API calls,
improving the performance of the orchestrator itself would be beneficial. A possible
approach worth investigating could be parallelizing the execution of orchestrator call-
backs. Both parallelizing multiple orchestrator callbacks and running those callbacks
in parallel to the host node (the simulator or ROS bag player) could be viable. In
addition to a more efficient implementation of the orchestrator itself, the overhead of
serializing callback executions is significant. While some of that overhead is inherently
required by the serialization to ensure deterministic execution, it has already been
shown in Sections 4.1.3 and 4.1.4 that parallelism of callback executions can be
improved with more granular control over callbacks, their outputs, and service calls
made from within those callbacks.

When using a ROS bag instead of a simulator as the data source, some of the identified
problems are less concerning. Since a ROS bag player does not have to perform any
computation and reading recorded data is not usually a bottleneck for performance,
the overhead of the orchestrator API calls is less problematic. Furthermore, without
closed-loop simulation, the wait_until_dataprovider_state_update_allowed API
call is not necessary which has been identified as a factor that reduces the potential
for parallel callback execution. In some scenarios, the use of the orchestrator is even
able to improve execution time: When replaying a ROS bag, the speed of playback
is often adjusted. Use cases for playing back a recording at equal to or slower than
real-time occur when the developer intends to use interactive tools for introspection
and visualization such as for debugging the behavior of a software component in a
specific scenario. Often, however, the user is just interested in processing all messages
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in the bag, preferably as fast as possible. The playback speed is thus adjusted to be
as fast as possible while the software under test is still able to perform all processing
without dropping messages from subscriber queue overflow. This overflow however
is usually not apparent immediately, and processing speed may depend on external
factors such as system load, which makes this process difficult. When using the
orchestrator, however, the processing of all messages is guaranteed and queue overflow
is not possible. This allows the ROS bag player to publish messages as soon as
the orchestrator allows, without specifying any constant playback rate. Playing a
ROS bag is necessarily an open-loop configuration without any synchronization for
dataprovider state update, and the player itself is expected to have a fast execution
time when compared to the ROS nodes under test. If a speedup is achieved in the end
depends on if the remaining overhead from serializing callback invocations outweighs
the increased playback rate or not.

The design goal of minimizing the execution time impact is thus only partially achieved.
As measured in this section and detailed in Section 4.1.5, the serialization of callbacks
and thus the induced latency of executing callbacks is not minimal. The runtime of
the orchestrator component itself has been shown to be significant as well, although
this was not the bottleneck in this test scenario.
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In this thesis, a method for repeatable execution of system tests for software stacks
built using ROS was developed, implemented, and tested. The orchestrator achieves
this without modifying lower levels of the ROS client library stack or middleware,
by controlling callback invocations at the ROS topic level which are the source of
observed nondeterminism in the execution of ROS software stacks. This is done while
setting minimum requirements for the message-passing implementation, allowing in
particular arbitrary transmission delay and reordering of messages. An ordering for
callbacks at each node which also synchronizes service calls and concurrent access
to output topics between multiple nodes is ensured using incrementally constructed
callback graphs. The functionality of the implementation has been demonstrated
using test cases for the distinct sources of nondeterminism in callback execution as well
as with a real use case of running performance evaluation of a multi-object tracking
module. This example represents the intended use case of post-processing evaluation,
using the same software stack as when conducting real-world tests (which is explicitly
not an area of application for the orchestrator).

This use case has also been utilized to evaluate the continued additional effort in
integrating the orchestrator with new and existing ROS components. The integration
of the orchestrator into an existing simulator and the implementation of a ROS bag
player supporting the orchestrator has successfully been performed within this thesis.
The ongoing effort of modifying new nodes for use with the orchestrator has been
found to be strongly dependent on the complexity of the input/output behavior of the
node. It ranged from no changes at all for simple nodes to larger modifications of the
node’s callback behavior such as changing from entirely ROS-independent execution
to utilizing ROS timers.

Some limitations of the implemented approach have been identified. The orchestrator
may currently execute callbacks in a deterministic, but unexpected order, as seen
in Section 4.1.2. This is an effect of not requiring detailed information on the
expected timing of callbacks and service calls, resulting in the implicit assumption
that every callback has the same duration and makes service calls at the same point.
In Section 4.4.2, a node was not able to be fully utilized with the orchestrator due to
the specific input/output behavior. In particular, the behavior of publishing more
than one message on a specified output topic in some callback invocations is currently
not supported. Section 4.5 showed a significant increase in execution time when
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using the orchestrator, resulting in part from non-optimal callback serialization. Both
concurrent service calls (see Section 4.1.4) and concurrent callbacks which publish to
the same topic (Section 4.1.3) currently serialize the entire originating callback, even
if the concurrent access occurs only during a short fraction of the callback or while
publishing an output.

Outlook Although the orchestrator is already useful in its current form, and using
it to ensure the repeatability of automated testing of ROS components is planned,
improvements in multiple areas are proposed.

As became apparent during the integration of the multi-object tracking module,
it would be desirable to allow the configuration of a more complex input/output
behavior than initially anticipated. The implementation for combined callbacks
using the message filters package supports one complex, stateful model for callback
execution, but a more general solution might exist, which would allow the integration
of more nodes with fewer modifications. A possible solution for the specific problem
encountered was proposed in Section 4.4.4. To further improve usability and ease the
integration and maintenance of ROS nodes, automating some aspects of node and
launch configuration files would be desirable.

Using static inspection or dynamic observation of a node during runtime could, for
example, provide an initial version of a node description, or could detect divergence
between an existing description and the observed behavior. Such analysis is possible
within ROS. For instance, a method for inferring causal links between node inputs and
outputs was recently proposed by Bédard et al. in [BLBD23]. Launch configurations
and existing ROS launch files currently duplicate a lot of information, with unexpected
behavior if configurations such as topic remappings differ between both. Reducing
this redundancy would not only simplify the creation of the configuration file but
also significantly reduce the potential for error while maintaining and changing both
files.

A possible improvement to align the system behavior while using the orchestrator
better to the behavior without the orchestrator could be to allow specifying an
expected callback duration (see Section 4.1.5). This would allow the orchestrator
to order the callbacks not only deterministically, but also in the order one would
generally expect without the orchestrator.

Reducing the execution time impact of using the orchestrator is considered to be
important for adoption. Approaches for improving the orchestrator’s performance
such as by multithreaded execution of orchestrator callbacks have been proposed in
Section 4.5.2. In Section 4.1.5, methods for improving parallel callback execution by
explicitly intercepting service calls and node outputs have been identified.
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