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1 Introduction

In recent years, not only the number of mobile computing devices has grown signif-
icantly, but the amount of very small, low power embedded devices such as identi-
fication tags and cards in daily use is higher than ever.

Almost all of those devices perform some sort of security functions as their primary
or secondary purposes. Functions such as device and user authentication, verifi-
cation and generation of digital signatures, encryption and protection of user data
are ubiquitous. Those all rely on traditional cryptographic measures, often relying
on the secrecy of a private key. This presents an issue especially on devices which
are very resource constrained in terms of chip area and power usage. In those
cases, it may not be possible to provide non volatile memory for secure storage of
keys, especially if the security requirements call for special anti-tamper measures
to protect the storage against invasive attacks.

Physical unclonable functions (PUFs) are a proposed solution to those problems. A
PUF allows derivation of a secret key without the need for additional storage in a
way that is inherently tamper sensitive, or provides a direct authentication mecha-
nism to the device. Those authentication mechanisms have however been shown
to be vulnerable against modeling attacks. Both the construction of a mathemati-
cal model using in-depth knowledge about the PUFs design, and modeling using
machine learning techniques including artificial neural networks (ANNs) have been
demonstrated [13] and pose a significant limitation on the security and usability of
PUFs.
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1 Introduction

The goal of this thesis is to implement a program capable of executing those attacks,
which allows testing of a PUF design with regards to this specific vulnerability. The
vulnerability or resistance of specific designs should also be quantifiable to give
an estimate of the required effort an attacker would have to undertake in order to
succeed in impersonating such a device. This program will then be used to evaluate
and compare the modeling resistance of multiple PUF designs.

In chapter 2, an introduction into the working principle of PUFs is given, as well
as an overview of the machine learning techniques used. Chapter 3 goes into
detail about the implementation of the program and the metrics used to evaluate
the modeling efforts. The results of testing various PUF architectures against ANN
based modeling are presented in chapter 4. A conclusion and aspects of possible
future work are given in chapter 5.
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2 Theory and Background

In this chapter, an overview of the fundamentals of both physical unclonable func-
tions and artificial neural networks is given. This will provide the necessary back-
ground on PUFs, as well as introduce the fundamental concept behind the specific
PUFs used in later chapters. Furthermore, the principle behind ANNs will be intro-
duced with a focus on multi layer perceptrons (MLPs), as this is the type of ANN
used in this thesis.

2.1 Physical Unclonable Functions

The ever rising number of mobile and embedded electronic devices prompts a need
for lightweight authentication methods. Currently, this is provided using on-device
secret keys, which are placed in non-volatile memory, alongside cryptographic hard-
ware capable of encryption or digital signing. This is however not the most area- and
power efficient method of authentication. PUFs aim to not only improve efficiency,
but also resistance against invasive attacks, which traditionally required specialized
anti-tamper hardware [5, 22].

PUFs can be described as systems, whose behavior is dependent on random inter-
nal variations, which inevitably occur during manufacturing of the device. It is crucial
that those variations can not be deliberately fabricated, for example after analyzing
another instance of the PUF. Although the concept is not limited to electronic cir-
cuits, as introduced in [4], the PUFs considered in this work are all “silicon PUFs”,
that may be implemented on field-programmable gate arrays (FPGAs), in silicon on
a dedicated chip, or adjacent to the device using it.
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2 Theory and Background

The PUF generally has a digital output of one or multiple bit, which is referred to as
the response r. It may also accept additional input in the form of a challenge c. This
makes it possible to model the PUF as a black-box challenge-response system.
The response is given as r = f(c), where f() is unique to each instance of the
PUF. A tuple containing a challenge and its corresponding response (c, r) is called
a challenge-response-pair (CRP).

Physical unclonable functions can be categorized into two categories, the main dif-
ference being the domain of f():

Weak PUF Weak PUFs are a way of storing secret keys other than in non-volatile
memory. They generally allow for only a small set of challenges, commonly only
one. This requires some level of robustness in the PUF output or appropriate error
correction, since it is not possible to compensate for an unreliable output by ap-
plying a large amount of challenges. It is also required to protect the PUF against
unauthorized readout, as a single readout may reveal the entirety of the stored key
[22].

Strong PUF The Strong PUF is characterized by a large amount of possible chal-
lenges. It is desired that the number of possible challenges grows exponentially
while the circuit area grows linearly, which prevents an attacker from reading out all
possible challenge-response-pairs. It is also important that an attacker might not
infer the response to any challenge even with knowledge of every CRP used so far
[5]. Desirable properties of a PUF are also to maximize both the intra-hamming-
distance, which describes the hamming distance of responses of a single PUF to
different challenges, and the inter-hamming-distance, which measures the distance
of the responses of multiple PUF instances. Those measures prevent inherent bias
of the response both in each individual instance and across multiple instances of
the same design. This makes strong PUFs suitable for direct use in authentication
flows. A naive strong PUF authentication protocol consists of two phases:
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2.1 Physical Unclonable Functions

During enrollment, the device is inside a trusted area in possession of the issuing
body. A large number of (uniformly random generated) CRPs is extracted from the
device and stored in a secure database. It is important that the CRPs extracted at
this stage stay private, and the readout process is not observed by an attacker. This
phase happens only once.

In the authentication phase, the server wants to authenticate the device over an
insecure channel. The server sends a challenge c from the CRP database to the
device, which calculates the response r̃ = f(c). The server then evaluates if the
response matches the one in the database (r̃ = r). This step may be repeated
by sending multiple challenges or deriving further challenges from the first one on
the device, which enables the server to authenticate the device even if the PUF is
unreliable, which is generally assumed.

It has already been shown that this approach to authentication is vulnerable to mod-
eling attacks, with the goal of predicting PUF responses after observing previous
successful authentication sequences. Further PUF-based authentication protocols
have been proposed. Those are however also limited in the amount of security im-
provement they provide, or negate the advantages in circuit-area or complexity of
PUFs described above [2]. Therefore, the naive authentication protocol described
here is assumed in the following.

2.1.1 Examples of Weak PUFs

In this section, two common examples for approaches to constructing weak PUFs
shall be given. Those will not be covered in detail, as the rest of this work relies
on the challenge-response behavior as exhibited by strong PUFs. Nonetheless, a
clear distinction between PUF types is essential.

SRAM-PUF

During power-up of an SRAM cell, the cell will transition from an unstable state
into either one of the two stable 1 or 0 states. Which of those states is assumed,
is dependent on both noise during power-up, but also on process variation of the
transistors. Each cell has therefore a tendency (or “skew”) towards one state, which
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2 Theory and Background

is consistent on each power-up. This produces a unique fingerprint for each SRAM
chip. Identification is done by computing the Hamming distance between the to be
identified fingerprint and all known fingerprints, and choosing the device with the
smallest distance. It has been shown that with a large enough fingerprint size, the
device can be accurately identified among a population of SRAM chips [7]. This
type of PUF has no challenge, as the response is present as soon as the SRAM is
powered on.

Ring-Oscillator based PUFs

A type of PUF which is especially suited for implementation on FPGAs is the Ring-
Oscillator- or RO-PUF [25]. It consists ofN identically laid-out ring oscillators, which
differ slightly in frequency due to manufacturing variation. An output bit is obtained
by selecting two ring oscillators based on the challenge, and comparing the fre-
quencies of the selected oscillators. While there are N(N−1)

2
possible choices of two

different oscillators to compare, the number of independent bits that can be gener-
ated is only log2(N !). Correlations are present as soon as two oscillators a and c
are compared, where they have both previously been compared to an oscillator b
with the results a < b and b < c. Additional restrictions on comparable oscillators
apply, as it has been shown that details about the specific placement of individual
oscillators introduce bias in the measured frequencies [6]. Because of this relatively
small challenge-set, the RO-PUF is classified as a weak PUF.

2.1.2 Examples of Strong PUFs

Strong PUFs are the main aspect of this work, as the inherent property of a large set
of possible CRPs makes machine-learning based attacks possible. In this section,
both the arbiter PUF and the Loop-PUF are introduced. The arbiter PUF repre-
sents the fundamental building block for the PUF designs evaluated in sections 4.2
and 4.3, and the Loop-PUF is one of multiple approaches of utilizing ring-oscillators
in strong PUFs.
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2.1 Physical Unclonable Functions

Arbiter PUF

The arbiter PUF works on the principle of a race condition between two circuit paths
of identical nominal length. A rising edge on the input is split into two paths, which
travel through a chain of delay elements. In each element of the PUF, the paths
may be swapped if the challenge bit applied to the corresponding element is 1. This
results in a different total path for each applied challenge, while keeping the length
of both paths the same relative to each other. In reality, the paths in each element
differ uncontrollably due to process variations in manufacturing. This results in a
difference in signal propagation through the PUF, at the end of which the arbiters
output is only dependent on which signal arrives first.

Figure 2.1 shows an arbiter PUF with an applied challenge, and it can be observed
how the paths are swapped every time the challenge bit ci is 1. It is also apparent
that the number of challenges n = 2N grows exponentially with the number of
elements N in the PUF.

c0 = 0 c1 = 1 cN = 0

. . .
A

rb
ite

r
r

Figure 2.1: Schematic of the arbiter PUF.

When describing the N -stage arbiter PUF using an additive delay model [3], only
N + 1 parameters are necessary, after eliminating delay components common to
both paths. The PUF response is then linearly dependent on the parity vector Φ

[24]:

Φi =
n−1∏
k=i

(1− 2ck), i = 0, . . . , n− 1, Φn = 1 (2.1)

∆c = ~wTΦ (2.2)

Where ∆c is the delay difference of both paths when applying challenge c, and
~w ∈ RN+1 the weight vector containing the PUF parameters.
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2 Theory and Background

Loop-PUF

1 M 1 M 1 M

LPUF Controller

freq

I D 1 = sign(D B Z A −D Z A B )
I D 0 = sign(D A B Z −D B Z A )

I D 2 = sign(D Z A B −D A B Z )

AB Z A ZB
A

A
B

B
Z

Z

Figure 2.2: Schematic of the Loop PUF with controller taken from Zhoua Cherif
Jouini et al. [1]

Although the ring-oscillator based PUF has been described as a weak PUF (sec-
tion 2.1.1), there exist strong PUF designs utilizing ring-oscillators. One example
is the Loop-PUF [1]: The Loop-PUF is based on a single ring-oscillator, which is
comprised of configurable delay chains. Each delay chain consists of multiple con-
figurable delay elements. The delay elements are configured by one challenge bit
each. During a single readout process, the ring oscillator is measured multiple times
with different configurations, which a controller derives from the initial challenge. By
comparing the frequency measurements, multiple response bits are generated. Fig-
ure 2.2 illustrates this with a controller that divides the challenge into three parts A,
B and Z. By rotating the challenge, it is applied to the ring-oscillator three times,
resulting in three measurements D, from which the response is generated. It is im-
portant that the frequency measurement itself is kept secret, as this would greatly
simplify modeling of the ring oscillator.

2.2 Artificial Neural Networks

In this thesis, ANNs are used to attack PUFs by modeling the relationship between
challenge and response based on previously seen CRPs. In this chapter, the spe-
cific type of ANN used is described.
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2.2 Artificial Neural Networks

ANNs are networks made up of neurons, which are modeled after the human brain.
They are capable of providing solutions to problems in computer science that are
hard to solve manually. This is done by a method of teaching, which makes ANNs
part of the field of machine learning.

Use of an ANN is usually split into two phases: In the training phase, the network
is presented with example data, and adjusts its parameters in order to learn the
relationship between the input and output data.

During the inference phase, new input data is presented to the network, which then
predicts the output. In the following, the perceptron and multi layer perceptron are
introduced:

2.2.1 Perceptron

∑
x1

x2

x3

w1

w2

w3

y

Figure 2.3: Schematic illustration of a single perceptron with input vector ~x, weights
~w and output y (Source: own illustration)

The perceptron is modeled after a single biological neuron. Given an input vector
~x ∈ Rm, its output is

y =

1 if
∑m

i=0wi · xi + b > 0,

0 otherwise
(2.3)

using the weight-vector ~w and bias b.

The perceptron is an algorithm capable of solving simple binary classification prob-
lems. Figure 2.3 shows the typical schematic representation of the perceptron in-
cluding the summation of the weighted inputs and the threshold determining the
output.
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2 Theory and Background

Perceptron Learning Algorithm

The perceptron learning algorithm was first presented in 1985 [21]. Given a training
set T = {( ~x1, t1), . . . , (~xs, ts)} containing s feature vectors ~xi with the corresponding
output ti ∈ {0, 1}, the goal of the learning algorithm is to find the weight-vector ~w
and bias b which satisfy the constraints in T .

The algorithm is initialized by choosing random weights ~w and bias b, as well as a
learning rate η. The following steps are then repeated as long as T contains training
data:

1. Choose a vector ~x and the corresponding output t from the training set. Cal-
culate the actual output y = f(~x) using the current weights ~w and bias b.

2. Calculate the difference of the expected and actual output δ = t− y.

3. Adapt the weights and bias: ~wi(t+ 1) = ~wi + ηδ~xi and b(t+ 1) = b+ ηδ

If the data in the training set is linearly separable, this algorithm is guaranteed to
converge to a solution which correctly separates the feature vectors in T [16].

2.2.2 Multi Layer Perceptron

x1

x2

x3

y1

y2

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Figure 2.4: Multi Layer Perceptron with Input ~x ∈ R3, two hidden layers with four
neurons each, and two output neurons. (Source: "Example: Neural
network" by Kjell Magne Fauske on texample.net, used under CC BY
2.5 / Layer count and colors adjusted)
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2.2 Artificial Neural Networks

In order to solve separation problems which are not linearly separable, multiple
neurons can be connected to form a MLP. Neurons in the MLP are arranged in
layers, with at least one hidden layer and an output layer. The output layer can have
multiple neurons, in this case the network output is a vector ~y ∈ Rn. MLPs are fully
connected networks, which means that every node in a particular layer is connected
to every node in the following layer. Figure 2.4 shows a MLP featuring two hidden
layers with four neurons each, three input neurons and two output neurons. The
Universal Approximation Theorem [8] states that even with a single hidden layer
the network can approximate any continuous function, given enough neurons in the
hidden layer. Similar observations have been made in the case of a fixed number
of neurons per layer, but arbitrary network depth [11].

Activation Functions

In contrast to the formal definition of the perceptron (equation 2.3), the neurons that
make up the MLP use activation functions different to the Heaviside step function.
In the following, the weighted sum over the neuron inputs will be applied to the
activation function f resulting in an output

y = f(~w · ~x+ b) = f

(
m∑
i=0

wi · xi + b

)
. (2.4)

Different activation functions are in use by state-of-the-art machine learning appli-
cations, an overview is given in [18]. Commonly used examples include sigmoid
functions such as the logistic function

f(x) =
1

1 + e−x
(2.5)

which is commonly used in the output layer, where its output can be interpreted as
a classification probability. Activation functions in the output layer can be chosen to
fit the desired output vector format, for example such that the output represents a
discrete probability distribution in a classification task.

The rectified linear unit (ReLU) function, defined as

f(x) = ReLU(x) = max{0, x} (2.6)

11



2 Theory and Background

has gained popularity [20] due to the low computational complexity when forwarding
and calculating gradients, and is often used in hidden layers.

MLP Learning

For the training phase of the MLP, a training set T = {( ~x1, ~t1), . . . , (~xs, ~ts)} is used
analogous to the perceptron learning algorithm.

Training is performed using stochastic gradient descent (SGD), in which the weights
are adjusted according to the gradient of the error function.The required gradi-
ents for weights in other layers than the output layer are calculated using error-
backpropagation [23].

SGD minimizes the error between expected and actual network output according to
an error function. The error function is usually chosen depending on the output type
of the network. A popular example is the mean squared error (MSE), defined as:

e = ‖~t− ~y‖2 =
m∑
i=1

(ti − yi)2 (2.7)

For multi-class classification problems, cross-entropy and Kullback–Leibler diver-
gence are measures of the similarity of the resulting probability densities. For binary
classification tasks, binary cross-entropy may be used [9]:

e = t · log(y) + (1− t) · log(1− y) (2.8)

Many current developments in machine learning focus on ANN types other than
the MLP used here. Those architectures are usually derived by considering prop-
erties of the specific tasks they are trying to solve. Convolutional Neural Networks
(CNNs) for example optimize convolution kernels which are applied to images. This
introduces location invariance as the same kernels are applied across the whole
image, and utilizes the spatial relation present in images [17]. This reduces the
number of weights to be trained compared to the MLP, reducing training time. Other
networks are specialized for processing time-series data or 3D point-clouds. Many
of those architectures such as the CNN can be constructed as special cases of

12



2.2 Artificial Neural Networks

the fully-connected MLP, where weights are shared or connections missing. As the
networks used in this work are comparatively small, and training time is not the
limiting factor, those specializations are not required, leaving the generalized MLP
approach as a viable option.
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2 Theory and Background
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3 Implementation

One objective of this work is to implement a framework for experimental evaluation
of existing and new PUF designs against modeling attacks using ANNs. This frame-
work should allow a researcher to quickly test the modeling capabilities by providing
a set of CRPs. While this is of course not capable of determining that a design is
truly resistant against modeling, it is able to indicate if the design is vulnerable
against common attacks and provides metrics for comparison. This chapter gives
an insight into the implementation of this framework, and the additional simulation
capabilities that were added.

3.1 Simulation

All experiments in this work have been carried out using simulated datasets. While
some simulation of the arbiter PUF was already available as a Matlab script, it
proved convenient to re-implement this in python and integrate it with the simula-
tions required for the other types of PUFs. The arbiter-based PUFs are simulated
using an additive delay model similar to [3]: The total delay of each path is the sum
of the delays of the connecting wires the signal passes through, with the switch it-
self assumed to not add any delay. The simulation program does not model noise
or other factors contributing to an incorrect response readout. The resistance of
modeling against readout error has been evaluated, but to avoid having to create
a large number of datasets, the readout error is applied just before training (see
section 4.1.1). Simulation was implemented for the arbiter-, XOR-arbiter-, staged-
arbiter- and Loop-PUF, and was provided for the arbiter variants V1 - V3, which are
introduced in section 4.3. The output of the simulation is a list of CRPs in the comma
separated values (CSV) format, which was chosen for its widespread compatibility
with other programs.

15



3 Implementation

3.2 Preprocessing

As the PUF architectures used in this work are mainly based on the arbiter PUF, the
capability of transforming the challenges into parity-vector representation (equa-
tion 2.1) is required. As stated above, the simulated CRP data is not processed
in any way, so this preprocessing happens directly after loading the (simulated)
dataset from disk. Since the same dataset is likely to be used for many experiments,
it proved useful to cache the calculated parity-vectors on disk, since the calculation
may take some time especially on datasets containing thousands of CRPs. This
computation was also implemented to run parallelized, resulting in a more than 7×
speedup on the 6-core, 12-thread system used for most computations.

Another preprocessing option is to introduce random error in the response data.
The user can specify a probability with which a response bit will be flipped, simulat-
ing noise during readout or error during transmission of the challenge or response.
This option of adding noise to the PUF readout was preferred to directly modeling
the noise during the simulation stage, since this allows the user to directly specify
the bit error rate (BER), which may be easily measured when analyzing a hardware
implementation of a PUF. This also allows comparison with different types of PUFs,
which may be difficult if measured using noise figures of internal structures that may
differ between designs.

A similar approach has been taken in [24]: During simulation, the readout noise
for each delay is explicitly simulated. Readout of a single challenge then happens
eleven times, using majority voting to determine the final response. Then, addi-
tional error is applied later the same way as explained above. In this thesis, it is
believed to be beneficial to simulate the PUF in an ideal way, and not make any as-
sumptions about readout noise and the corresponding error correction techniques
to compensate for the noise. Instead, all those factors are combined into the total
BER.
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3.3 Modeling

3.3 Modeling

Modeling is done using ANNs, specifically fully-connected MLPs. For all machine
learning related tasks, the widely popular TensorFlow library [15] with the Keras
API is used. It provides means of specifying the network architecture layer by layer,
and already implements the used activation functions (section 2.2.2). In all exper-
iments, the hidden layers use the ReLU activation function, while the output layer
(containing only one node unless explicitly stated) is using the sigmoid function
(equation 2.5). Since the network output is a continuous value between 0 and 1, a
threshold has to be applied in order to generate the predicted binary PUF response.
In the case of successful modeling the output has been observed to be close to zero
or one in almost every case, making the choice of threshold less relevant to the re-
sult. The built-in accuracy calculation uses a threshold of 0.5 for binarization.

For the training phase, an optimization algorithm has to be chosen. This then min-
imizes the loss function, which can also be varied. Due to good performance in
previous works regarding arbiter- [24] and ring-oscillator [13] PUFs, the Adam op-
timizer [12] has been chosen. Adam introduces individual learning rates for each
parameter, which are continually adapted during training. This improves its perfor-
mance compared to classical SGD learning. The loss function to be minimized is
binary cross-entropy (equation 2.8).

Since we are working with simulated datasets which are far bigger than necessary
for modeling, the number of CRPs used for training is selectable by the user, either
by the total number or as a percentage of the total dataset.

3.4 Hyperparameter Tuning

The hyperparameters of a neural network include the number of layers and neu-
rons, choice of activation functions and parameters of the learning phase such as
learning rate, loss function and optimization algorithm. Because it is not generally
possible to choose those parameters intuitively or optimal, efforts have been made
to find near-optimal hyperparameters using iterative optimization algorithms. One
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3 Implementation

of those algorithms is Hyperband [14], which will be used here. Hyperband focuses
on speeding up random search over all possible configurations by adaptively allo-
cating resources to candidates. The authors observe a speedup of 5× to 30× over
other approaches such as Bayesian optimization [14].

Since this approach does still use considerable resources and time, as many neural
network configurations have to be trained, it is important to limit the search space
and define the parameters being optimized. The main parameter used here is the
network layout, meaning the number of neurons in each layer (see section 2.2.2).
The Hyperband implementation used is built into keras-tuner, which is the library
we use for hyperparameter tuning, as it integrates well with TensorFlow Keras. The
implementation allows conditional hyperparameters, which are parameters that may
not be present in all configurations. This feature is used in order to optimize the
number of neurons in each layer at the same time as the layer count.

Additionally to the number of parameters, the numerical range and step of each
parameter influences the search space. Unless explicitly specified, the hyperpa-
rameter tuning is performed to test one to four hidden layers, with one to 20 neu-
rons each. This covers the network configurations used in previous work (refer to
section 4.1 and following), without increasing the search space significantly, which
would in turn vastly increase the runtime required. It is possible to specify a step
parameter, which can reduce the granularity at which the parameter is modified, but
in our case this has been set to the default value of 1.

During the tuning process it is also possible to optimize parameters relating specif-
ically to the training phase of the network. In some cases, we used this to optimize
the learning rate, although instead of an integer range a set of possible values has
been provided to reduce the search space, since the exact value of this parameter
is assumed to be less important than its order of magnitude.

The objective of the tuner has been set to maximize the validation accuracy, to pre-
vent converging on an overfitting model, and an additional early stopping callback
is used to stop a trial if the validation loss does not improve over ten consecutive
epochs.
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3.4 Hyperparameter Tuning

3.4.1 Evaluation

There are multiple standard measures for evaluating the performance of an ANN,
especially in the special case of a single binary output, which is common for bi-
nary classification tasks and is also the case in the networks used here. In those
cases, metrics such as the F1-score are commonly used in order to avoid problems
introduced by highly unbalanced datasets, in which one of the two classes is under-
represented. For modeling PUFs however, this is not the case, since PUF designers
already aim to create a PUF with an output that is uniformly distributed and does
not show a bias towards either response (see section 2.1). This allows the use of
the prediction accuracy directly, which provides a much more intuitive metric. The
accuracy is defined as

acc =
nTP + nTN

nTotal

(3.1)

where nTP (“true positives”) is the number of responses correctly predicted as one,
nTN (“true negatives”) the number of correctly predicted zeroes, and nTotal the to-
tal number of predictions. If a balanced dataset is assumed, the remaining “false
negatives” and “false positives” are just the difference to the total number of ones
or zeros, which should be both approximately nTotal/2. This provides the accuracy
as a simple metric of “how many responses were predicted correctly”.

While this is a useful metric if the number of available CRPs is known, it is of greater
importance to the designer of a PUF, how many CRPs an attacker would have to
collect, in order to successfully impersonate the PUF [19]. This directly affects the
level of security provided by the PUF and is used in this work as a measure to com-
pare different types of PUFs. Determining this measure requires a threshold for
determining when the modeling is successful, and may be compared over different
values of a parameter of the design, such as the challenge size or number of cir-
cuit elements (section 4.3.1). For selection of the threshold we referred to results
from hardware implementations of comparable designs, it may also be required to
choose this based on the modeling capabilities of the ANN.

In order to evaluate modeling performance over a range of training set sizes, a mode
of operation was introduced that performs training with different numbers of CRPs
using the same ANN architecture. The results are both displayed in a diagram and
output for further analysis. It is also possible to additionally iterate over different
values for the BER, as explained in section 3.2. Iteration over model parameters
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3 Implementation

was omitted, not only since that requires multiple datasets, but also because it
was found that it may be advantageous to choose a different network architecture,
which may be found using hyperparameter tuning (section 3.4). It should also be
noted that evaluation is performed on a dataset different to the training set, to detect
problems like overfitting. Since the simulated datasets usually contain vastly more
CRPs than needed for training, it was possible to use the remaining part of the
dataset as the validation set.
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4 Results

In this chapter, the implementation described above is used in order to evaluate dif-
ferent PUF designs. First, the arbiter PUF is modeled as a baseline measurement,
to which the other designs can be compared. The main metric will be the number of
CRPs required to achieve a sufficient prediction accuracy, as this would most likely
be the deciding factor on how feasible an attack would be. Factors such as availabil-
ity of computational resources and time are considered to be of smaller importance,
as the experiments have been executed on desktop computer hardware, with train-
ing usually taking less than a few minutes. The only time intensive process is the
hyperparameter tuning, but results of that may be applied to many PUF instances
of the same design.

The scope of this work is limited to a specific type of attack. The provided set of
CRPs is assumed to be fixed, and the challenges are uniformly random. Other than
the parity-vector preprocessing (section 3.2), the training set is not altered before
use. Specifically, the challenges are not well chosen in advance. This scenario may
present itself when an attacker is able to eavesdrop on the authentication process,
but does not possess control over the device in a way that allows readout of re-
sponses to arbitrary challenges. In two of the cases presented below, the ability to
choose special challenges, in particular those where the challenge bits controlling a
specific part of the PUF are constant, may lead to additional vulnerabilities. Those
make it possible to separate the PUF into smaller blocks that are easy to model.
Those attacks are outside the scope of this evaluation, but have to be considered
for a full understanding of the presented PUFs. It will be mentioned explicitly wher-
ever such a vulnerability is suspected.
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4 Results

4.1 Arbiter PUF

Although it has been demonstrated already that the arbiter PUF is not resistant to
modeling attacks using neural networks, those results should be confirmed in order
to use them as a baseline to compare further results to.

Experiments with a 64-bit arbiter PUF on ASIC produced using 65nm CMOS tech-
nology [10] show an expected BER in the range of at least 2% up to 5% under
varying environmental conditions such as temperature, supply voltage and nearby
active components. Other experimental results [25] show a lower error rate (0.7%
probability) but also indicate significant decreases in reliability under non-ideal en-
vironmental conditions. Those measurements do not take BER of transmission
channels or possible error correction of the response into account. Thus a thresh-
old of 98% modeling accuracy has been chosen to indicate successful modeling of
the arbiter PUF.

Firstly, we want to reproduce and verify the results in [24]. There, simulated train-
ing datasets are used equivalent to our simulation, assuming normal distributed
delays. The challenges used in training are transformed to parity-vector format
(equation 2.1) before applying them to the neural network. The neural network
used for modeling consists of a single hidden layer with five neurons, using the
ReLU activation function. Using the same training process, we achieve a 98.86%
modeling accuracy using the same number of 6800 training CRPs. This differs from
the claimed 99.50% but is nonetheless sufficient for convincingly modeling the PUF.
Since the number of training CRPs is an important metric, this model is evaluated
using different training set sizes. Figure 4.1b shows that an accuracy of 98.06%
is reached using only 3700 CRPs. Since the learning process is influenced by
random weight initialization and does not converge to the exact same result over
multiple runs, modeling has been repeated multiple times with the same dataset.
Figure 4.1 shows only the maximum of all attempts. In figure 4.1a the same graph
is shown for the 16-bit variant, which shows a similar curve for the prediction accu-
racy, although the entire graph is shifted to the left resulting in a much lower number
of CRPs required to reach the threshold.

22



4.1 Arbiter PUF
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Figure 4.1: Prediction accuracy for 16- and 64-bit arbiter PUF for varying training
set size.

Since the number of neurons and the single hidden layer seem to be chosen some-
what arbitrarily, we employ the automated hyperparameter tuning described in sec-
tion 3.4 to test if any other ANN configuration may lead to better results. The hy-
perparameter tuning was repeatedly executed with varying training set sizes. It was
found that just targeting the highest prediction accuracy using a training set that is
already known to be sufficient to reach the desired minimum accuracy did not nec-
essarily result in a configuration that achieves similar results using a smaller train-
ing set. Thus, the hyperparameter tuning was repeatedly executed with smaller
training sets as long as the predefined threshold for the prediction accuracy was
reached.The same procedure has been repeated for challenge sizes from 16- to
256-bit, the results of which are presented in table 4.1, with the last column show-
ing the number of neurons in each layer for the configuration used.

Figure 4.2 shows the relation between the challenge length and the minimum num-
ber of CRPs with which it was possible to achieve a modeling accuracy of at least
98%. It is apparent that the relationship is almost perfectly linear, while the number
of possible challenge grows exponentially with the challenge length. This confirms
the inherent susceptibility of the arbiter PUF towards this attack, and provides a
baseline that should be improved upon.

23



4 Results

Table 4.1: Required CRPs for 98% prediction accuracy of the arbiter PUF after hy-
perparameter tuning.

Length CRPs Accuracy ANN Architecture

16-bit 900 98.43% [5,4,2]
32-bit 1600 98.33% [4,4]
64-bit 3700 98.06% [5]
128-bit 6400 98.31% [7, 5]
256-bit 11700 98.01% [5]
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Figure 4.2: Required training set size for 98% prediction accuracy by challenge size
of the arbiter PUF

4.1.1 Error prone training data

In the previous section, it has been established that the arbiter PUF is not 100%
reliable in reality. While this has been used to justify the modeling threshold, the
simulated arbiter PUF did not contain any noise-sources and produced a perfectly
reliable output. In the following, bit-errors will be introduced into the response train-
ing data with a predefined rate, and modeling accuracy will be evaluated.

Figure 4.3 shows the prediction accuracy with different levels of error-rate in the
training data. The accuracy is measured using the validation set, which does not
contain erroneous responses. This implies that the ANN is tolerant against a noisy
PUF response, as the prediction accuracy for example still reaches 97% even if
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Figure 4.3: Accuracy of 64-bit arbiter PUF modeling with error in training data.

5% of the responses in the training set are erroneous. It is however evident that the
reliability of the modeling attempts decreases rapidly with a rising BER, and a larger
number of CRPs is required. This metric will not be the focus of the following PUF
designs, but the implications of varying amounts of readout error and possible error
correction measures during the authentication process on modeling attacks could
be the subject of future work.

4.2 XOR Arbiter PUF

One approach that has been shown to improve the modeling resistance of arbiter
PUFs is the XOR-arbiter PUF [25]. It employs multiple parallel arbiter PUFs, which
all receive the same challenge. The outputs are connected to an XOR gate, which
produces the final PUF response. The size of the PUF is directly controlled by the
length of the challenge and the number of parallel arbiter PUFs used, both of which
are also parameters to our simulation of this design. It has been suggested that the
number of arbiter PUFs chosen should always be odd, as the output may exhibit
bias otherwise [26].
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4 Results

The 64-bit XOR PUF has been chosen as a candidate for comparison to the plain
arbiter PUF. Before attempting to optimize the results using hyperparameter tuning,
a model which already promises some results shall be used. In [24], the 3-XOR
PUF has successfully been modeled using a MLP with two hidden layers, contain-
ing seven and five neurons each. Figure 4.4 shows the modeling accuracy of the
network after training with a varying number of CRPs. It can be observed that al-
though the modeling is not perfectly reliable, using at least 22000 CRPs almost
always results in a prediction accuracy of more than 98%. This is lower than the
36800 CRPs used in [24], which can be explained by the additional readout noise
applied in those experiments, and by the higher achieved prediction accuracy of
99.22%. As already described in section 4.1, the necessary prediction accuracy
can be chosen lower than that, which is why we keep the 98% threshold chosen
there.

0 5 10 15 20 25 30 35 40 45

·103

0.5

0.6

0.7

0.8

0.9

1

Training CRPs

P
re

di
ct

io
n

ac
cu

ra
cy

Prediction accuracy of 64-bit 3-XOR arbiter PUF

Accuracy
98%

Figure 4.4: Prediction accuracy for 64-bit 3-XOR arbiter PUF.

The resistance of the XOR arbiter PUF towards modeling attacks with neural net-
works rises steeply when increasing the number of parallel arbiter PUFs. Using
the approach of setting a threshold for the required modeling accuracy, and then
applying the hyperparameter tuning technique did not lead to improved results over
those in [24] when using four or more parallel arbiter PUFs. Table 4.2 shows the
improved results for the 2- and 3-XOR PUFs, and the already available results for
the 4- and 5-XOR PUFs. The improvements in the first two variants can be mainly
attributed to the predefined target accuracy of 98%, which allowed the use of a sig-
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Table 4.2: Required CRPs for learning the XOR arbiter PUF. Results for 4- and
5-XOR variants adopted from [24], since no further improvement was
achieved.

Nr. of XORs CRPs Accuracy Architecture

2 4700 98.67% [2,18,5]
3 22000 98.57% [7,5]
4 41200 98.60% [15,15]
5 320000 97.23% [29,29]

nificantly smaller training set of 4700 instead of 32.000 CRPs for the 2-XOR variant
and 22 000 instead of 36 800 for the 3-XOR PUF. Even larger XOR PUFs require
significantly more training data and larger neural networks to model, [24] proposes
using a fully connected network of five layers with an average number of 230 neu-
rons per layer to model the 6-XOR PUF with 97.42% accuracy. This does not only
not reach the accuracy target used here, but also vastly exceeds the size of the
search-space of the hyperparameter tuning efforts undertaken in this thesis. The
number of trainable parameters in such a MLP sums up to over 220.000, which
is far more than the number of variables used to describe the PUF completely in
simulation. While this does not present an inherent problem, it may be an area of
future work to employ special non-fully-connected networks which take advantage
of properties of the PUF in order to simplify training of the ANN.

This shows that the XOR PUF does succeed in the goal of improving modeling
resistance compared to the single arbiter PUF by introducing a nonlinearity. It is
also easy to improve this resistance further by adding parallel arbiters at the cost of
additional circuit area.

4.3 Staged Arbiter PUFs

In this section, three different types of PUF shall be evaluated. All of them are
derived from the arbiter PUF, by combining multiple arbiter PUFs in a way that either
obfuscates the PUF response, similar to the XOR-arbiter PUF, or the challenge.
These measures are intended to circumvent the inherent modeling vulnerabilities of
the arbiter PUF, arising from the linear delay model (see section 2.1).
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4.3.1 V1 Arbiter PUF
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Figure 4.5: Circuit diagram of the V1 arbiter PUF with m first stage PUFs of length
k, and n-bit total challenge size

The first arbiter PUF variant is very similar to the XOR arbiter PUF. As before, m
arbiter PUFs in parallel form the first stage. In order to get a single response bit,
another arbiter PUF is employed, whose m-bit challenge consists of the responses
from the first stage PUFs. Contrary to a m-bit XOR, this introduces an additional
circuit component containing inherent randomness. While a single arbiter PUF may
be easy to model, this is usually under the assumption that the challenge is always
known and it is possible to calculate a parity vector in order to solve the arbiter PUF
as a linearly separable problem (equations 2.1 and 2.2). This is not possible in the
V1 arbiter, as long as the assumption holds that the (internal) responses of the first
stage are not accessible to the adversary. An additional parameter is whether the
same challenge is applied to each first-stage PUF or if the challenge is split and
the total challenge represents the concatenation of all first-stage challenges. The
parameter k describes the length of each first-stage arbiter PUF. This means that
in the case k ·m = n (n being the total challenge length) each first-stage arbiter is
controlled by a separate part of the challenge, and for k = n that each first-stage
arbiter PUF receives the same (entire) challenge. Other cases may be realized by
overlapping the challenges, but are not considered here. A configuration will be
described as PUF(k, n,m).
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4.3 Staged Arbiter PUFs

Special case k = n

In this design, the same challenge of length n is applied to m PUFs. The responses
of those PUFs then form the challenge for the final m-bit PUF. The differences of
this design compared to the XOR arbiter PUF shall be explored, especially with
regards to different values of m, starting with m = 2 arbiter PUFs in the first layer.

In order to facilitate fair comparison to the other PUF designs, the targeted pre-
diction accuracy should ideally be identical. It was however observed during initial
experiments with this architecture, that modeling was very inconsistent, and a clear
relationship between PUF parameters and required CRPs could not be determined.
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Figure 4.6: Prediction accuracy for the PUF(64, 64, 6) V1-PUF, comparing the pre-
vious threshold for successful modeling of 98% to the new threshold of
96%

This was due to the chosen accuracy threshold, which was chosen to match the
arbiter PUF evaluation (section 4.1) at 98%. As apparent in figure 4.6, the modeling
characteristics are still typical in the sense that a clear threshold for the number of
required CRPs exists, the scale however is slightly different. It can be observed
that the modeling accuracy plateaus before it reaches the threshold of 98%, which
makes this value a poor choice for comparison. This is why in the following, the
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threshold at which a modeling attempt is considered successful has been lowered
to 96%. While this has to be taken into account when comparing this architecture
to others, this allows a much clearer evaluation in terms of how the PUF responds
to changing the aforementioned parameters.

Comparing the V1 configuration PUF(n, n,m) to the single arbiter PUF is done
in terms of required circuit area, which is estimated using the number of required
switching elements. For the arbiter PUF, this is equivalent to the challenge length,
while for the V1 PUF, this is equal tom·n+m, sincem n-bit arbiter PUFs are needed
in the first stage, as well as one m-bit arbiter PUF in the second stage. This way,
both the cost of implementing and the number of random parameters are identical,
and the modeling results are to be attributed to the difference in architecture. Similar
to the XOR PUF, the challenge length n of the V1 PUF is kept constant, and only
the number of parallel arbiter PUFs in the first stage (m) is varied.

The PUF(32, 32, 5) V1 variant consisting of five parallel 32-bit arbiter PUFs sur-
passes the single 128-bit arbiter PUF in terms of CRPs required, while using a
comparable number of circuit elements (132 versus 128 switching elements). This
comes at the cost of reduced challenge length however.
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Figure 4.7: Comparison of required training set size by number of switching ele-
ments between the single arbiter PUF and the special case "k = n" of
the V1 PUF
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Table 4.3: Modeling results of the PUF(32, 32,m) V1 PUF, 96% accuracy threshold.

m CRPs Accuracy Architecture

2 1300 96.12% [3,8]
3 3600 96.53% [4,11,10]
4 8700 96.61% [5,16,17,11]
5 15100 96.11% [9,12,15]
6 26400 97.02% [11,16,17]
7 49000 96.94% [18,17,17]
8 118000 96.85% [17,20,16,6]

Figure 4.7 shows that in this special case the added delay elements in the form of
parallel arbiter PUFs in the first stage do not have the same effect on learnability
as adding the same number of switching elements to the end of an arbiter PUF.
The number of required CRPs for successful modeling using ANNs increases at a
higher rate for the V1 PUF compared to the arbiter PUF. It is also apparent that the
increase does not happen strictly linear as observed with the single arbiter PUF: For
the 32-bit variant, the number of required CRPs grows approximately exponentially,
although especially with the 64-bit version it is apparent that this is only the case for
m ≥ 5, for smaller m the increase follows a more linear trend (figure 4.8).

It has already been mentioned that this configuration is very similar in its layout to
the XOR PUF, with the only difference being that the m-input XOR is replaced by a
m-bit arbiter PUF. Compared to the 64-bit XOR PUF with the same number of PUFs
in the first stage (section 4.2), the V1 PUF can however be more easily modeled,
using a smaller amount of CRPs. Compared to the XOR PUF it was also viable
to model the PUF for values m > 5 using fewer CRPs and smaller ANNs. The
modeling results for the V1 PUF of both 32- and 64-bit challenge length are listed
in tables 4.3 and 4.4, and visualized in figure 4.8. The comparison in figure 4.8 also
highlights that between the 32- and 64-bit V1 PUFs, the influence of the number
of parallel first-stage PUFs m outweighs the impact of the challenge length n on
modeling difficulty.
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Table 4.4: Modeling results of the PUF(64, 64,m) V1 PUF, 96% accuracy threshold.

m CRPs Accuracy Architecture

2 1600 96.33% [3]
3 6200 96.16% [6,10]
4 15100 99.59% [2,13,9]
5 12600 96.53% [7,10]
6 24300 96.56% [11,13,18,12]
7 47000 96.65% [12,17,17,20]
8 160600 96.94% [15,20,18,16]
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Figure 4.8: Required training set size for 98% prediction accuracy of the V1 PUF
configuration PUF(n, n,m)

Special case k ·m = n

The second special configuration option k · m = n explores the option to apply
different parts of the challenge to different first-stage PUFs. The n-bit challenge
is split into m challenges of k bit each. It is possible to either use many small
first-stage PUFs, forming the challenge to a larger second-stage PUF, or to use
a small number of larger first-stage PUFs, similar to the k = n case. All tested
configurations are listed in table 4.5.
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Table 4.5: V1 PUFs with parameters k ·m = n.

Configuration PUF(k, n,m) CRPs Accuracy Architecture

PUF(1, 16, 16) 300 96.66% [7]
PUF(1, 32, 32) 800 96.29% [3,9]
PUF(1, 64, 64) 1700 96.54% [4]

PUF(2, 16, 8) 1900 96.10% [16]
PUF(2, 32, 16) threshold not reached
PUF(2, 64, 32) threshold not reached

PUF(64, 128, 2) 2800 96.47% [3]
PUF(32, 128, 4) 95000 98.25% [18]

The first three tested configurations consist of just a single switching element and
arbiter in each first stage PUF (k = 1). Each challenge bit has the possibility of
getting inverted by the 1-bit first stage element. The evaluation shows that even
though the challenge input to the second stage PUF is not directly accessible, this
configuration does not provide any increased modeling resistance when compared
to the arbiter PUF. Increasing the size of the first stage PUFs to 2-bit challenges,
while keeping the total challenge length consistent, seems to provide a much im-
proved modeling resistance. While 16-bit version of this configuration is still eas-
ily modeled, both the 32-bit and 64-bit challenge length versions were not able to
be modeled using the same approach as for the arbiter, XOR and first V1 PUFs
with a comparable amount of CRPs. Since the second stage consists of a single
16- respectively 32-bit arbiter PUF which has been shown to be easily modeled
in previous works and confirmed in section 4.1, it can be assumed that the first
stage sufficiently obfuscates the input to that arbiter PUF to impede the modeling
of the second stage. The last two configurations both accept a challenge of 128-bit
length, and are constructed using a first stage of either two 64-bit arbiter PUFs of
four 32-bit arbiter PUFs. Despite a difference in the number of switching elements
of only two between both configurations, the PUF(64, 128, 2) setup with a smaller
second stage is much more susceptible to modeling. This continues the trend of an
increased modeling difficulty with an increasing number of parallel first-stage struc-
tures, as already observed when comparing the V1 PUF to the single arbiter PUF
above and in figure 4.7.
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Considering this specific PUF configuration however, concerns about the second
type of attack mentioned in the introduction to chapter 4 have to be raised: In the
n = k ·m case, all of the PUF elements in the first stage are directly and individually
accessible. This could open an attack vector in which the attacker only varies the
challenge to a single first stage PUF, which keeps the remaining m−1 intermediate
responses constant (C∗ in figure 4.5), reducing the problem to multiple m-bit arbiter
PUFs with only one changeable challenge bit determined by the k-bit first stage
PUF. As this requires well chosen challenges, the feasibility of such an attack is not
examined here, but may present an area of future work.

4.3.2 V2 Arbiter PUF
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Figure 4.9: Circuit diagram of the V2 arbiter PUF variant with n-bit challenge

The approach to obfuscate the input to the last PUF stage is continued in the second
arbiter PUF variant: The first half of the challenge is applied to the first arbiter PUF.
The output of the first PUF then influences the challenge of the second PUF, by
XOR with the second half of the initial challenge, as shown in figure 4.9. Again, it is
important that the intermediate response r1 is kept secret.

The second arbiter variation employs the same number of switching elements as
the original arbiter PUF. To add an additional layer of indirection, the PUF is divided
into two identical arbiter PUF modules, each with a size of half the total challenge
length. The first half of the challenge is applied to the first stage, while the second
half gets applied to the second arbiter PUF stage, but only after getting XORed with
the response of the first PUF.
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Table 4.6: V2 PUF modeling results.

Length CRPs Accuracy Architecture

16-bit 1100 98.24% [14]
32-bit 7400 98.68% [5,16,11]
64-bit 12200 98.02% [6,16]
128-bit 24700 98.11% [6,13,12]
256-bit 38100 98.16% [5,15,17]
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Figure 4.10: Required training set size for 98% prediction accuracy of the V2 PUF
compared to the single arbiter PUF

As the final response results from an n/2-bit arbiter PUF, the V2 PUF is expected
to perform at least better than that. Compared to the n/2-bit single arbiter PUF, the
challenge is not applied directly, but is XORed with the response of the first PUF.
This obfuscates the inner challenge to the second stage, as the response of the
first stage is not exposed.

This design does seem to provide a direct improvement in modeling resistance
compared to the arbiter PUF, as evident in figure 4.10. For each challenge length
configuration from 16- to 256-bit, the V2 PUF required more than three times as
many CRPs in order to achieve a similar level of prediction accuracy. Unlike the
XOR or V1 variants however, the number of required CRPs does not grow faster
than linear in the number of challenge bits or circuit elements.
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It should also be mentioned again that attacks other than the one used here are
possible with this specific design. Just as with some of the V1 variants, if the
challenge can be arbitrarily chosen during the attack, it is possible to model the
individual parts of the PUF by keeping the corresponding challenge bits constant.
In the V2 architecture in particular, the intermediate result r1 may be observed at
the output with a well chosen second half of the challenge, which is kept constant.
The second stage arbiter could also be modeled by varying only the second half
of the challenge, as the influence of the first half only consists in flipping the entire
challenge to the second stage if r1 is one, which could be accounted for. Again,
as this requires specially chosen challenges, such an attack is not covered in this
evaluation.

4.3.3 V3 Arbiter
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Figure 4.11: Arbiter PUF variation V3 for n-bit challenge.

The third variant consists of n − 1 2-bit arbiter PUFs for n-bit challenges. The
response of each stage is used in the input of the following stage, along with one
additional challenge bit. The simulation is only parameterized in terms of challenge
length, but the size of each stage (length of each individual arbiter PUF) could also
be adjusted. With fi(·) representing the single arbiter PUF i, ri the corresponding
response and ck bit k of the input challenge, the V3 PUF can be described as
follows, where ⊕ describes XOR:
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4.3 Staged Arbiter PUFs

Table 4.7: Modeling results of the arbiter PUF variant V3, 98% accuracy threshold.

Length CRPs Accuracy Architecture

16-bit 300 99.0% [3,5]
32-bit 175 99.66% [2,2]
64-bit 225 98.81% [3]
128-bit 600 100% [1,7]
256-bit 1100 98.6% [2]

r0 = f0(c0, c1)

r1 = f1(r0 ⊕ c0, r0 ⊕ c1 ⊕ c2)
r2 = f2(r1 ⊕ c1, r1 ⊕ c2 ⊕ c3)

...

r = fn−2(rn−3 ⊕ cn−3, rn−3 ⊕ cn−3 ⊕ cn−2 ⊕ cn−1)

(4.1)

This architecture combines the individual arbiter PUFs in a more sequential ap-
proach, with the aim that a neural network capable of modeling the PUF needs a
greater depth than previously which requires a greater training set to optimize.

Additionally, the challenge to all stages except the first is not directly known. This
should improve security as it is not possible to calculate the parity feature-vectors
for these stages, which usually enable efficient modeling of the arbiter PUF.

In order to evaluate these hypotheses, simulated CRP data is generated for the PUF
architecture as shown in figure 4.11, for challenge lengths n from 16 to 256. The
same iterative modeling approach of using the automated hyperparameter tuning
until the prediction accuracy reaches the threshold of 98% is used. Training was
again performed using the parity feature vectors (equation 2.1).

Table 4.7 displays the results of this approach. The second column displays the
minimum number of training CRPs that we were able to perform successful model-
ing with. As evident in table 4.7, the hypothesis of an intrinsic modeling resistance
due to the sequential "deep" layout can be firmly rejected. Not only does the pro-
posed architecture not improve modeling resistance compared to the single arbiter
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PUF, our experiments show that modeling requires a significantly lower number of
training CRPs to achieve the same modeling accuracy (figure 4.12). These num-
bers and the results of the hyperparameter tuning indicate a systematic flaw in this
particular design, and further investigation into the reason behind this is needed.
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Figure 4.12: Required training set size for 98% prediction accuracy of the V3 PUF

4.4 Loop PUF

The Loop PUF as described in section 2.1.2 has the distinct difference to the other
PUF designs described here that depending on parametrization, multiple response
bits can be generated for one challenge. The PUF contains N delay chains of M
delay elements each, which each gets controlled by one challenge bit resulting in
a n = N · M bit challenge. N is also the number of response bits when using
the control strategy suggested in [1]. Since the ANN response can no longer be
regarded as a binary classification problem, the previously used loss function of
binary cross-entropy can no longer be used. Instead, the MSE over all response
bits is minimized in this case. Accuracy is still used as a metric, representing the
fraction of correct versus total predictions. Following the approach of the authors in
[1], N is chosen as three, while M is varied. This keeps the number of response
bits consistent and allows variation of the challenge length.

38



4.4 Loop PUF

Table 4.8: Modeling results of the N = 3 Loop PUF.

M n CRPs Accuracy Architecture

6 18 30000 98.46% [11,9,2]
11 33 67500 98.07% [5,12,3,1]
16 48 313600 98.70% [17,18,2]
22 66 347600 98.17% [4,14,1]
32 96 712500 98.15% [20,9,17,6]
43 129 ≥900000 ≤97.72%

The distinct property of the Loop PUF of having a response of more than one bit
makes direct comparison to previous results difficult. While the modeling results in
table 4.8 suggest that the M = 22 Loop PUF, which accepts a 66-bit challenge,
is similar to the 5-XOR 64-bit PUF (section 4.2) in modeling difficulty, it has to be
considered that the arbiter-based PUF variants only produce one response bit per
challenge. Depending on the requirements of the authentication process, this might
mean that for a single authentication attempt, the arbiter PUF requires more read-
outs and thereby more challenges transmitted, which benefits the eavesdropping
attacker.

Figure 4.13 shows the required number of CRPs for modeling in relation to the
challenge length. It can be seen that for larger challenges, this number grows much
faster than observed with the arbiter PUF or the improved V2 PUF. In contrast to
the V1 and XOR PUF, the increase in modeling difficulty also occurs alongside an
increase in challenge length, which may be desired. Since the sources of random-
ness in this architecture are not more than in the arbiter PUF of same challenge
length, these results can be attributed to the controller which defines how the same
challenge is applied to the PUF multiple times and how multiple response bits are
generated. Since the exact functionality of the controller is known to an attacker, an
area of future work could be to include that knowledge into the modeling process
and thus constrain modeling to the unknown, random parts of the PUF.
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Figure 4.13: Modeling results of the N = 3 Loop PUF.

4.5 Comparison

To provide a quick overview over the results of the selected PUF architectures,
figure 4.14 and figure 4.15 are provided. Figure 4.14 compares the single arbiter
PUF (section 4.1) with the V2 (section 4.3.2), and V3 (section 4.3.3) architecture,
which have in common that the circuit area requirements are directly proportional to
the challenge size. Only architecture V2 was found to provide an improved modeling
resistance over the arbiter PUF.

Figure 4.15 compares the V1 PUF (section 4.3.1) to the XOR PUF of equivalent
challenge length. Both use a varying number of parallel elements in the first stage,
and it is apparent that the modeling resistance grows quickly when increasing this
parameter. Despite the additional random elements in the second stage, XOR PUF
still required a greater number of CRPs to model than the V1 PUF in a similar
configuration.
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Figure 4.14: Comparison of the V2 and V3 PUFs with the single arbiter PUF by
challenge length.
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5 Conclusion and Outlook

The goal of this thesis was the implementation of a program for attacking physical
unclonable functions using neural networks, as well as examining a way of mea-
suring the resistance to such attacks in a comparable manner. The attacks are
executed from the point of an adversary that can eavesdrop on CRPs during au-
thentication and has knowledge of the PUF design, but no direct access to the
device under attack.

For the first part, a framework has been realized in python, utilizing tensorflow as a
standard library for machine learning tasks. It allows a researcher to use simulated
or measured challenge-response datasets in order to examine the vulnerability of
the PUF design against modeling. The artificial neural networks used are fully con-
nected multi layer perceptrons, which require few assumptions about the function
being modeled and are still a viable choice here due to the small size of the required
networks. Automated hyperparameter tuning has been used and made available to
the user to remove the variable of the network architecture from any comparisons.

In the second part, multiple PUF designs have been compared in terms of the re-
quired amount of challenge-response-pairs that an attacker would have to acquire
in order to succeed at modeling the PUF using the presented techniques. Four of
the evaluated designs are variants and combinations of the arbiter PUF architec-
ture: The V1 variant (section 4.3.1) which is similar in design to the XOR arbiter
PUF (section 4.2) also increases modeling difficulty compared to the single arbiter
PUF in a similar manner, where the relationship between required CRPs and circuit
area of the PUF is exponential rather than linear. The V2 PUF also increases mod-
eling difficulty above the arbiter PUF, although the number of required CRPs still
grows linearly with the challenge length. No improvement has been found in the V3
architecture, which could be modeled using even less CRPs than the single arbiter
PUF. The last PUF architecture tested is the Loop-PUF, which differs from the other

43



5 Conclusion and Outlook

architectures in that it is based on a ring oscillator with configurable delay elements.
It also employs additional control structures which enables generating multiple re-
sponse bits for each challenge. While this makes comparison to the other PUFs
difficult, modeling was only achieved using a large amount of CRPs, which required
expensive configurations of the XOR or V1 arbiter architectures.

The measure of the minimum number of CRPs required to achieve a predefined
prediction accuracy has been used throughout the evaluation and provides a good
indication of the security of a PUF against this kind of attack.

Areas of future work could include using in-depth knowledge about a PUF design
in order to include fixed architectural features in the ANN architecture, reducing the
number of parameters to be learned. Additionally, for some of the evaluated PUF
designs other attacks may be more feasible if the possibility of applying well chosen
challenges is given, which should be considered.
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